Chapter 22: Problem 3
Find the inverse Laplace transform of (a) \(\frac{1}{2(s+3)}\) (b) \(\frac{1}{2 s+3}\) (c) \(\frac{3 s}{s^{2}+1}\) (d) \(\frac{-6}{s^{2}+9}\) (e) \(\frac{s+2}{s^{2}+4}\)
Chapter 22: Problem 3
Find the inverse Laplace transform of (a) \(\frac{1}{2(s+3)}\) (b) \(\frac{1}{2 s+3}\) (c) \(\frac{3 s}{s^{2}+1}\) (d) \(\frac{-6}{s^{2}+9}\) (e) \(\frac{s+2}{s^{2}+4}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeGiven \(\mathcal{L}\\{x\\}=X, x(0)=2, x^{\prime}(0)=3\) find the Laplace transform of each of the following expressions: (a) \(x^{\prime}\) (b) \(x^{\prime \prime}\) (c) \(2 x^{\prime}-x\) (d) \(3 x^{\prime \prime}+2 x^{\prime}-x\) (e) \(-2 x^{\prime \prime}+x^{\prime}+3 x\)
The Laplace transform of \(x(t)\) is \(X(s)\), \(x(0)=2, x^{\prime}(0)=3, x^{\prime \prime}(0)=-1\). Find the Laplace transform of (a) \(2 x^{\prime}-3 x\) (b) \(x^{\prime \prime}-2 x^{\prime}+3 x\) (c) \(x^{m}\) (d) \(x^{\prime \prime \prime}+2 x^{\prime \prime}+3 x^{\prime}-4 x\) (e) \(2 x^{m \prime}-3 x^{n}-7 x^{\prime}+6 x\)
The first shift theorem states that if \(\mathcal{L}(f(t)\\}=F(s)\), then $$ \mathcal{L}\left\\{\mathrm{e}^{-a t} f(t)\right\\}=F(s+a) $$ where \(a\) is a constant. (a) From the definition of the Laplace transform show that $$ \mathcal{L}\left\\{\mathrm{e}^{-a t} f(t)\right\\}=\int_{0}^{\infty} \mathrm{e}^{-(s+a) t} f(t) \mathrm{d} t $$ and hence prove the first shift theorem. (b) Use Table \(1.1\) in Block 1 and the first shift theorem to find \(\mathcal{L}\left\\{u(t-3) \mathrm{e}^{-7 t}\right\\}\) where \(u(t)\) is the unit step function.
Find the inverse Laplace transform of (a) \(\frac{3}{s+2}\) (b) \(\frac{-2}{s-1}\) (c) \(\frac{2}{(s+2)^{3}}\) (d) \(\frac{1}{s}+\frac{1}{s+1}\) (e) \(\frac{1}{(s-3)^{2}}+\frac{1}{(s-3)^{3}}\)
Find the Laplace transform of each of the following expressions: (a) \(2 t \mathrm{e}^{2 t}\) (b) \(1-t^{3} \mathrm{e}^{3 t}\) (c) \(\mathrm{e}^{t}(1+\sin t)\) (d) \(\mathrm{e}^{-2 t}(\sin 3 t+2 \cos 3 t)\) (e) \(t(\cos 2 t-3 \sin 2 t)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.