Find the inverse Laplace transform of (a) \(\frac{1}{2(s+3)}\) (b) \(\frac{1}{2 s+3}\) (c) \(\frac{3 s}{s^{2}+1}\) (d) \(\frac{-6}{s^{2}+9}\) (e) \(\frac{s+2}{s^{2}+4}\)

Short Answer

Expert verified
Question: Find the inverse Laplace transforms of the following functions: (a) \(\frac{1}{2(s+3)}\) (b) \(\frac{1}{2s+3}\) (c) \(\frac{3s}{s^2+1}\) (d) \(\frac{-6}{s^2+9}\) (e) \(\frac{s+2}{s^2+4}\) Answer: (a) \(\frac{1}{2}e^{-3t}\) (b) \(\frac{1}{3}e^{-\frac{3}{2}t}\) (c) \(3\cos{t}\) (d) \(-\frac{2}{3}\sin{3t}\) (e) \(\frac{1}{4} \cos{2t}+\frac{1}{4}\sin{2t}\)

Step by step solution

01

(a) Find the inverse Laplace transform of \(\frac{1}{2(s+3)}\)

To find the inverse Laplace transform of \(\frac{1}{2(s+3)}\), we can use the Laplace transform table. The given function is the Laplace transform of the exponential function \(e^{-3t}\) scaled by \(\frac{1}{2}\). So the inverse Laplace transform is: $$L^{-1}\left(\frac{1}{2(s+3)}\right)=\frac{1}{2}e^{-3t}$$
02

(b) Find the inverse Laplace transform of \(\frac{1}{2s+3}\)

To find the inverse Laplace transform of \(\frac{1}{2s+3}\), we can rewrite the function as: $$\frac{1}{2s+3} = \frac{1/3}{s+\frac{3}{2}}$$ Now, we recognize that this function is similar to the Laplace transform of the exponential function \(e^{-\frac{3}{2}t}\) scaled by \(\frac{1}{3}\). So the inverse Laplace transform is: $$L^{-1}\left(\frac{1}{2s+3}\right)=\frac{1}{3}e^{-\frac{3}{2}t}$$
03

(c) Find the inverse Laplace transform of \(\frac{3s}{s^2+1}\)

To find the inverse Laplace transform of \(\frac{3s}{s^2+1}\), we compare this function with the Laplace transform table and find that this function is the Laplace transform of the cosine function scaled by \(3\). So the inverse Laplace transform is: $$L^{-1}\left(\frac{3s}{s^2+1}\right)=3\cos{t}$$
04

(d) Find the inverse Laplace transform of \(\frac{-6}{s^2+9}\)

To find the inverse Laplace transform of \(\frac{-6}{s^2+9}\), we can rewrite the function as: $$\frac{-6}{s^2+9} = -\frac{2}{3}\frac{3}{s^2+3^2}$$ We recognize that this function is similar to the Laplace transform of the sine function scaled by \(-\frac{2}{3}\) and where \(a=3\). So the inverse Laplace transform is: $$L^{-1}\left(\frac{-6}{s^2+9}\right)=-\frac{2}{3}\sin{3t}$$
05

(e) Find the inverse Laplace transform of \(\frac{s+2}{s^2+4}\)

To find the inverse Laplace transform of \(\frac{s+2}{s^2+4}\), we first rewrite it as a sum: $$\frac{s+2}{s^2+4} = \frac{1}{4}\frac{4s}{s^2+4^2}+\left(\frac{1}{2}-\frac{1}{4}\right)\frac{1}{s^2+4^2}$$ Now, we identify both functions as Laplace transforms of the cosine function and sine function, respectively, and find the inverse Laplace transforms: $$L^{-1}\left(\frac{s+2}{s^2+4}\right)=\frac{1}{4} \cos{2t}+\frac{1}{4}\sin{2t}$$

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Given \(\mathcal{L}\\{x\\}=X, x(0)=2, x^{\prime}(0)=3\) find the Laplace transform of each of the following expressions: (a) \(x^{\prime}\) (b) \(x^{\prime \prime}\) (c) \(2 x^{\prime}-x\) (d) \(3 x^{\prime \prime}+2 x^{\prime}-x\) (e) \(-2 x^{\prime \prime}+x^{\prime}+3 x\)

The Laplace transform of \(x(t)\) is \(X(s)\), \(x(0)=2, x^{\prime}(0)=3, x^{\prime \prime}(0)=-1\). Find the Laplace transform of (a) \(2 x^{\prime}-3 x\) (b) \(x^{\prime \prime}-2 x^{\prime}+3 x\) (c) \(x^{m}\) (d) \(x^{\prime \prime \prime}+2 x^{\prime \prime}+3 x^{\prime}-4 x\) (e) \(2 x^{m \prime}-3 x^{n}-7 x^{\prime}+6 x\)

The first shift theorem states that if \(\mathcal{L}(f(t)\\}=F(s)\), then $$ \mathcal{L}\left\\{\mathrm{e}^{-a t} f(t)\right\\}=F(s+a) $$ where \(a\) is a constant. (a) From the definition of the Laplace transform show that $$ \mathcal{L}\left\\{\mathrm{e}^{-a t} f(t)\right\\}=\int_{0}^{\infty} \mathrm{e}^{-(s+a) t} f(t) \mathrm{d} t $$ and hence prove the first shift theorem. (b) Use Table \(1.1\) in Block 1 and the first shift theorem to find \(\mathcal{L}\left\\{u(t-3) \mathrm{e}^{-7 t}\right\\}\) where \(u(t)\) is the unit step function.

Find the inverse Laplace transform of (a) \(\frac{3}{s+2}\) (b) \(\frac{-2}{s-1}\) (c) \(\frac{2}{(s+2)^{3}}\) (d) \(\frac{1}{s}+\frac{1}{s+1}\) (e) \(\frac{1}{(s-3)^{2}}+\frac{1}{(s-3)^{3}}\)

Find the Laplace transform of each of the following expressions: (a) \(2 t \mathrm{e}^{2 t}\) (b) \(1-t^{3} \mathrm{e}^{3 t}\) (c) \(\mathrm{e}^{t}(1+\sin t)\) (d) \(\mathrm{e}^{-2 t}(\sin 3 t+2 \cos 3 t)\) (e) \(t(\cos 2 t-3 \sin 2 t)\)

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free