Problem 3
For the following formulae, find \(y\) at the given values of \(x\) : (a) \(y=\frac{1}{2} x+\frac{1}{3}, x=-2, x=0, x=1\) (b) \(y=2 x^{2}+3 x+1, x=-2, x=-1\), \(x=0, x=1, x=2\) (c) \(y=2 x^{3}+3 x^{2}, x=-4, x=0, x=4\)
Problem 3
Find the value of \(\frac{9 !}{4 !}\).
Problem 3
Remove the brackets from the given expression: \((-2)(a+b)\)
Problem 4
Remove the brackets from the given expression: \((2+x)(4+x)\)
Problem 4
Factorise (a) \(x^{2}+8 x-9\), (b) \(x^{2}+9 x-22\) (c) \(x^{2}+10 x+9\), (d) \(x^{2}+7 x+12\) (e) \(x^{2}-7 x+12\)
Problem 4
State the reciprocal of (a) 9 , (b) \(\frac{4}{3}\), (c) \(\frac{4 x}{3 y}\).
Problem 4
Explain why no cancellation is possible in the expression \(\frac{a+2 b}{a-2 b}\).
Problem 4
In each case, simplify the given expression, if possible. \(a b+b a\)
Problem 4
Remove the brackets from the expression \(\left(4 x^{3}\right)^{5}\)
Problem 4
Find the value of \(\frac{9 !}{4 !}\).