Chapter 6: Problem 3
Given the function \(f(t)=2 t^{2}+4\) find (a) \(f(x)\) (b) \(f(2 x)\) (c) \(f(-x)\) (d) \(f(4 x+2)\) (e) \(f(3 t+5)(\mathrm{f}) f(\lambda)(\mathrm{g}) f(t-\lambda)\) (h) \(f\left(\frac{t}{\alpha}\right)\)
Chapter 6: Problem 3
Given the function \(f(t)=2 t^{2}+4\) find (a) \(f(x)\) (b) \(f(2 x)\) (c) \(f(-x)\) (d) \(f(4 x+2)\) (e) \(f(3 t+5)(\mathrm{f}) f(\lambda)(\mathrm{g}) f(t-\lambda)\) (h) \(f\left(\frac{t}{\alpha}\right)\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(f(x)=x+6\) and \(g(x)=x^{2}-5\) find (a) \(f(g(0))\), (b) \(g(f(0))\), (c) \(g(g(2))\), (d) \(f(g(7))\).
Draw a graph of the function $$ f(x)= \begin{cases}2 x+1 & x<3 \\ 5 & x=3 \\ 6 & x>3\end{cases} $$ Find (a) \(\lim _{x \rightarrow 0^{+}} f(x)\) (b) \(\lim _{x \rightarrow 0}-f(x)\) (c) \(\lim _{x \rightarrow 0} f(x)\) (d) \(\lim _{x \rightarrow 3^{+}} f(x)\) (e) \(\lim _{x \rightarrow 3^{-}} f(x)\) (f) \(\lim _{x \rightarrow 3} f(x)\)
When stating the coordinates of a point, which coordinate is given first?
State the rule of each of the following functions: (a) \(f(x)=5 x\) (b) \(f(t)=5 t\) (c) \(f(x)=8 x+10\) (d) \(f(t)=7 t-27\) (e) \(f(t)=1-t\) (f) \(h(t)=\frac{t}{3}+\frac{2}{3}\) (g) \(f(x)=\frac{1}{1+x}\)
If \(f(x)=\frac{x-3}{x+1}\) and \(g(x)=\frac{1}{x}\) find \(g(f(x))\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.