Chapter 8: Problem 15
Solve (a) \(\ln \left(\mathrm{e}^{x}\right)=5000\) (b) \(\ln \left(\mathrm{e}^{x}+10\right)=5\) (c) \(\frac{2}{3} \ln \left(x^{2}+9\right)=3\) (d) \(\log \left(\frac{x}{2}+1\right)=1.5\)
Chapter 8: Problem 15
Solve (a) \(\ln \left(\mathrm{e}^{x}\right)=5000\) (b) \(\ln \left(\mathrm{e}^{x}+10\right)=5\) (c) \(\frac{2}{3} \ln \left(x^{2}+9\right)=3\) (d) \(\log \left(\frac{x}{2}+1\right)=1.5\)
All the tools & learning materials you need for study success - in one app.
Get started for freeCalculate the voltage gain in decibels of an amplifier where the input signal is \(0.15 \mathrm{~V}\) and the output signal is \(1.9 \mathrm{~V}\).
Solve (a) \(\ln x=2.4050\) (b) \(\ln x=0.9611\) (c) \(\ln x=-0.9611\) (d) \(\ln x=-2.0000\)
Solve the following equations: (a) \(\log x=0.7531\) (b) \(\log x=1.6431\) (c) \(\log x=-0.4213\) (d) \(\log x=-2.3500\)
Write the following using logarithms: (a) \(32=2^{5}\) (b) \(125=5^{3}\) (c) \(243=3^{5}\) (d) \(4^{3}=64\) (e) \(6^{2}=36\)
Simplify each expression as far as possible: (a) \(\mathrm{e}^{2 x} \mathrm{e}^{7 x}\) (b) \(\left(3 \mathrm{e}^{x}\right)\left(2 \mathrm{e}^{-x}\right)\) (c) \(\mathrm{e}^{2 x}\left(\mathrm{e}^{-2 x}+\mathrm{e}^{-x}+1\right)-\mathrm{e}^{x}\left(1+\mathrm{e}^{x}\right)\) (d) \(\frac{\mathrm{e}^{-3 x}}{2 \mathrm{e}^{-x}}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.