Chapter 8: Problem 2
Solve (a) \(\ln x=2.4050\) (b) \(\ln x=0.9611\) (c) \(\ln x=-0.9611\) (d) \(\ln x=-2.0000\)
Chapter 8: Problem 2
Solve (a) \(\ln x=2.4050\) (b) \(\ln x=0.9611\) (c) \(\ln x=-0.9611\) (d) \(\ln x=-2.0000\)
All the tools & learning materials you need for study success - in one app.
Get started for freeCalculate the voltage gain in decibels of an amplifier where the input signal is \(0.15 \mathrm{~V}\) and the output signal is \(1.9 \mathrm{~V}\).
Write the following using logarithms: (a) \(10^{2}=100\) (b) \(0.001=10^{-3}\) (c) \(\mathrm{e}^{-1.3}=0.2725\) (d) \(\mathrm{e}^{1.5}=4.4817\)
The current in a circuit, \(i(t)\), is given by $$ i(t)=25 \mathrm{e}^{-0.2 t} \quad t \geq 0 $$ (a) State the current when \(t=0\). (b) Calculate the value of the current when \(t=2\) (c) Calculate the time when the value of the current is \(12.5\).
The current, \(I\), through a diode is given by $$ I=I_{\mathrm{s}}\left(\mathrm{e}^{40 \mathrm{~V}}-1\right) $$ where \(I_{\mathrm{s}}\) is the reverse saturation current and \(V\) is the voltage across the diode. If the current is 300 times greater than the reverse saturation current, calculate the voltage across the diode.
Expand the brackets of the following expressions: (a) \(\left(e^{x}+2\right)^{2}\) (b) \(\left(\mathrm{e}^{x}+1\right)\left(\mathrm{e}^{-x}-1\right)\) (c) \(\left(\mathrm{e}^{2 x}+\mathrm{e}^{x}\right)\left(\mathrm{e}^{-2 x}+\mathrm{e}^{-x}\right)\) (d) \(\left(1+\mathrm{e}^{2 x}+\mathrm{e}^{-2 x}\right)\left(1-\mathrm{e}^{x}\right)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.