Simplify as far as possible: (a) \(\frac{\mathrm{e}^{2 x} \mathrm{e}^{x}}{\mathrm{e}^{-3 x}}\) (b) \(\left(4 \mathrm{e}^{2}\right)\left(3 \mathrm{e}^{-x}\right)\) (c) \(\frac{2 \mathrm{e}^{x}+1}{2}+\frac{2-\mathrm{e}^{x}}{3}\) (d) \(\mathrm{e}^{4 x}-\left(\mathrm{e}^{2 x}+1\right)^{2}\)

Short Answer

Expert verified
Question: Simplify the following expressions involving exponential functions: (a) \(\frac{\mathrm{e}^{2 x} \mathrm{e}^{x}}{\mathrm{e}^{-3 x}}\) (b) \(\left(4 \mathrm{e}^{2}\right)\left(3 \mathrm{e}^{-x}\right)\) (c) \(\frac{2 \mathrm{e}^{x}+1}{2}+\frac{2-\mathrm{e}^{x}}{3}\) (d) \(\mathrm{e}^{4 x}-\left(\mathrm{e}^{2 x}+1\right)^{2}\) Answer: (a) \(\mathrm{e}^{6 x}\) (b) \(12 \mathrm{e}^{2 - x}\) (c) \(\frac{4 \mathrm{e}^{x}+7}{6}\) (d) \(-2 \mathrm{e}^{2 x}-1\)

Step by step solution

01

(a) Expression

Given expression: \(\frac{\mathrm{e}^{2 x} \mathrm{e}^{x}}{\mathrm{e}^{-3 x}}\)
02

(a) Step 1: Apply Exponent Properties

Combine exponents in the numerator using property \(a^{m} a^{n} = a^{m+n}\): \(\frac{\mathrm{e}^{2 x + x}}{\mathrm{e}^{-3 x}} \implies \frac{\mathrm{e}^{3 x}}{\mathrm{e}^{-3 x}}\)
03

(a) Step 2: Simplify the Expression

Use the property \(\frac{a^m}{a^n} = a^{m-n}\): \(\mathrm{e}^{3 x - (-3 x)} \implies \mathrm{e}^{6 x}\)
04

(b) Expression

Given expression: \(\left(4 \mathrm{e}^{2}\right)\left(3 \mathrm{e}^{-x}\right)\)
05

(b) Step 1: Distribute the Constants

Perform the multiplication of constants: \(4 \cdot 3 \mathrm{e}^2 \mathrm{e}^{-x} \implies 12 \mathrm{e}^2 \mathrm{e}^{-x}\)
06

(b) Step 2: Combine the Exponents

Use the property \(a^m a^n = a^{m+n}\): \(12 \mathrm{e}^{2 - x}\)
07

(c) Expression

Given expression: \(\frac{2 \mathrm{e}^{x}+1}{2}+\frac{2-\mathrm{e}^{x}}{3}\)
08

(c) Step 1: Find Common Denominator

The common denominator for both fractions is 6. Rewrite each fraction with the common denominator: \(\frac{3(2 \mathrm{e}^{x}+1)}{6}+\frac{2(2-\mathrm{e}^{x})}{6}\)
09

(c) Step 2: Combine the Fractions

Add the two fractions now that they have a common denominator: \(\frac{3(2 \mathrm{e}^{x}+1)+2(2-\mathrm{e}^{x})}{6}\)
10

(c) Step 3: Simplify the Expression

Distribute the constants and combine like terms in the numerator: \(\frac{6 \mathrm{e}^{x}+3+4-2 \mathrm{e}^{x}}{6} \implies \frac{4 \mathrm{e}^{x}+7}{6}\)
11

(d) Expression

Given expression: \(\mathrm{e}^{4 x}-\left(\mathrm{e}^{2 x}+1\right)^{2}\)
12

(d) Step 1: Expand the Square

Apply the formula \((a+b)^2 = a^2 + 2ab + b^2\) on the second term: \(\mathrm{e}^{4 x}-\left(\mathrm{e}^{4 x}+2 \mathrm{e}^{2 x}+1\right)\)
13

(d) Step 2: Simplify the Expression

Combine like terms and simplify: \(\mathrm{e}^{4 x}-\mathrm{e}^{4 x}-2 \mathrm{e}^{2 x}-1 \implies -2 \mathrm{e}^{2 x}-1\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free