Simplify as far as possible: (a) \(\frac{\mathrm{e}^{x}+\mathrm{e}^{-x}}{2}+\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{2}\) (b) \(\mathrm{e}^{x}+\frac{1}{\mathrm{e}^{x}}-\mathrm{e}^{-x}\) (c) \(\frac{\mathrm{e}^{2 x}+\mathrm{e}^{x}}{\mathrm{e}^{x}}-1\) (d) \(\mathrm{e}^{3 x}\left(\mathrm{e}^{-2 x}-\mathrm{e}^{-3 \mathrm{x}}\right)+1\)

Short Answer

Expert verified
Question: Simplify the following expressions and identify if any two expressions are equal: (a) \(\frac{\mathrm{e}^{x}+\mathrm{e}^{-x}}{2}+\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{2}\) (b) \(\mathrm{e}^{x}+\frac{1}{\mathrm{e}^{x}}-\mathrm{e}^{-x}\) (c) \(\frac{\mathrm{e}^{2 x}+\mathrm{e}^{x}}{\mathrm{e}^{x}}-1\) (d) \(\mathrm{e}^{3 x}\left(\mathrm{e}^{-2 x}-\mathrm{e}^{-3 x}\right)+1\) Answer: All four expressions simplify to \(\mathrm{e}^{x}\). Therefore, they are all equal to each other.

Step by step solution

01

Combine the fractions

We can add the fractions by adding the numerators and keeping the common denominator. Result: \(\frac{\mathrm{e}^{x}+\mathrm{e}^{-x}+\mathrm{e}^{x}-\mathrm{e}^{-x}}{2}\)
02

Simplify the numerator

The terms \(\mathrm{e}^{x}\) and \(\mathrm{e}^{-x}\) will cancel out. Result: \(\frac{2\mathrm{e}^{x}}{2}\)
03

Cancel the common factors

The factors of 2 will cancel out, and we are left with just \(\mathrm{e}^{x}\). Result: \(\mathrm{e}^{x}\) (b) Simplify \(\mathrm{e}^{x}+\frac{1}{\mathrm{e}^{x}}-\mathrm{e}^{-x}\)
04

Express terms with the same exponent

Rewrite the second term with the same exponent as the third term: \(\frac{1}{\mathrm{e}^{x}} = \mathrm{e}^{-x}\) Result: \(\mathrm{e}^{x}+\mathrm{e}^{-x}-\mathrm{e}^{-x}\)
05

Simplify the expression

The terms \(\mathrm{e}^{-x}\) will cancel out, and we are left with just \(\mathrm{e}^{x}\). Result: \(\mathrm{e}^{x}\) (c) Simplify \(\frac{\mathrm{e}^{2 x}+\mathrm{e}^{x}}{\mathrm{e}^{x}}-1\)
06

Factor out common exponent in numerator

Factor out \(\mathrm{e}^{x}\) in the numerator. Result: \(\frac{\mathrm{e}^{x}(\mathrm{e}^{x}+1)}{\mathrm{e}^{x}}-1\)
07

Cancel the common factors

The factors of \(\mathrm{e}^{x}\) will cancel out. Result: \(\mathrm{e}^{x}+1-1\)
08

Simplify the expression

The terms 1 will cancel out, and we are left with just \(\mathrm{e}^{x}\). Result: \(\mathrm{e}^{x}\) (d) Simplify \(\mathrm{e}^{3 x}\left(\mathrm{e}^{-2 x}-\mathrm{e}^{-3 x}\right)+1\)
09

Distribute the exponent

Distribute the \(\mathrm{e}^{3 x}\) to both terms inside the parentheses. Result: \(\mathrm{e}^{3 x}\mathrm{e}^{-2 x}-\mathrm{e}^{3 x}\mathrm{e}^{-3 x}+1\)
10

Simplify the exponents

Using the property \(\mathrm{e}^{a}\mathrm{e}^{b}=\mathrm{e}^{a+b}\): Result: \(\mathrm{e}^{x}-\mathrm{e}^{0}+1\)
11

Simplify the expression

Since \(\mathrm{e}^{0}=1\), we combine the terms. Result: \(\mathrm{e}^{x}-1+1\)
12

Final simplified expression

The terms -1 and 1 will cancel out, and we are left with just \(\mathrm{e}^{x}\). Result: \(\mathrm{e}^{x}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free