Chapter 8: Problem 3
Solve (a) \(10^{x}=7\) (b) \(10^{x}=70\) (c) \(10^{x}=17\) (d) \(10^{\mathrm{x}}=0.7000\)
Chapter 8: Problem 3
Solve (a) \(10^{x}=7\) (b) \(10^{x}=70\) (c) \(10^{x}=17\) (d) \(10^{\mathrm{x}}=0.7000\)
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate (a) \(\mathrm{e}^{1.6},(\mathrm{~b}) \mathrm{e}^{-1.6},(\mathrm{c}) \frac{1}{\mathrm{e}^{1.6}}\).
Calculate the voltage gain in decibels of an amplifier where the input signal is \(0.5 \mathrm{~V}\) and the output signal is \(2.2 \mathrm{~V}\).
Write the following using logarithms: (a) \(10^{2}=100\) (b) \(0.001=10^{-3}\) (c) \(\mathrm{e}^{-1.3}=0.2725\) (d) \(\mathrm{e}^{1.5}=4.4817\)
Evaluate (a) \(\log 250\) (b) \(\ln 250\) (c) \(\log 0.46\) (d) \(\ln 0.46\)
Simplify as far as possible: (a) \(\frac{\mathrm{e}^{2 x} \mathrm{e}^{x}}{\mathrm{e}^{-3 x}}\) (b) \(\left(4 \mathrm{e}^{2}\right)\left(3 \mathrm{e}^{-x}\right)\) (c) \(\frac{2 \mathrm{e}^{x}+1}{2}+\frac{2-\mathrm{e}^{x}}{3}\) (d) \(\mathrm{e}^{4 x}-\left(\mathrm{e}^{2 x}+1\right)^{2}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.