Chapter 8: Problem 5
Solve (a) \(\log 2 x=1.5\) (b) \(\log (3 x+1)=2.1500\) (c) \(\log \left(x^{2}+3\right)=2.3671\) (d) \(4 \log (5 x-6)=-0.8000\)
Chapter 8: Problem 5
Solve (a) \(\log 2 x=1.5\) (b) \(\log (3 x+1)=2.1500\) (c) \(\log \left(x^{2}+3\right)=2.3671\) (d) \(4 \log (5 x-6)=-0.8000\)
All the tools & learning materials you need for study success - in one app.
Get started for freeSimplify as far as possible: (a) \(\frac{\mathrm{e}^{x}+\mathrm{e}^{-x}}{2}+\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{2}\) (b) \(\mathrm{e}^{x}+\frac{1}{\mathrm{e}^{x}}-\mathrm{e}^{-x}\) (c) \(\frac{\mathrm{e}^{2 x}+\mathrm{e}^{x}}{\mathrm{e}^{x}}-1\) (d) \(\mathrm{e}^{3 x}\left(\mathrm{e}^{-2 x}-\mathrm{e}^{-3 \mathrm{x}}\right)+1\)
Solve (a) \(10^{\log x}=17\) (b) \(10^{2 \log x}=17\) (c) \(10^{x} 10^{2 x}=90\) (d) \(10^{2 x}=30\left(10^{2}\right)\)
Solve (a) \(\ln \left(2 x^{2}\right)=3\) (b) \(2 \ln \left(x^{2}\right)=3\) (c) \(\ln \left(x^{2}+2\right)=1.3\) (d) \(3 \ln \left(x^{2}+1\right)=3.9\)
Calculate the voltage gain in decibels of an amplifier where the input signal is \(0.15 \mathrm{~V}\) and the output signal is \(1.9 \mathrm{~V}\).
Write the following using logarithms: (a) \(32=2^{5}\) (b) \(125=5^{3}\) (c) \(243=3^{5}\) (d) \(4^{3}=64\) (e) \(6^{2}=36\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.