Chapter 8: Problem 6
Solve (a) \(\ln \left(2 x^{2}\right)=3\) (b) \(2 \ln \left(x^{2}\right)=3\) (c) \(\ln \left(x^{2}+2\right)=1.3\) (d) \(3 \ln \left(x^{2}+1\right)=3.9\)
Chapter 8: Problem 6
Solve (a) \(\ln \left(2 x^{2}\right)=3\) (b) \(2 \ln \left(x^{2}\right)=3\) (c) \(\ln \left(x^{2}+2\right)=1.3\) (d) \(3 \ln \left(x^{2}+1\right)=3.9\)
All the tools & learning materials you need for study success - in one app.
Get started for freeThe temperature, \(T\), of a chemical reaction is given by $$ T=120 \mathrm{e}^{0.02 t} \quad t \geq 0 $$ Calculate the time needed for the temperature to (a) double its initial value, (b) treble its initial value.
Solve (a) \(\ln x=2.4050\) (b) \(\ln x=0.9611\) (c) \(\ln x=-0.9611\) (d) \(\ln x=-2.0000\)
Simplify as far as possible: (a) \(\frac{\mathrm{e}^{x}+\mathrm{e}^{-x}}{2}+\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{2}\) (b) \(\mathrm{e}^{x}+\frac{1}{\mathrm{e}^{x}}-\mathrm{e}^{-x}\) (c) \(\frac{\mathrm{e}^{2 x}+\mathrm{e}^{x}}{\mathrm{e}^{x}}-1\) (d) \(\mathrm{e}^{3 x}\left(\mathrm{e}^{-2 x}-\mathrm{e}^{-3 \mathrm{x}}\right)+1\)
Calculate the voltage gain in decibels of an amplifier where the input voltage is \(17 \mathrm{mV}\) and the output voltage is \(300 \mathrm{mV}\).
Evaluate (a) \(\log 250\) (b) \(\ln 250\) (c) \(\log 0.46\) (d) \(\ln 0.46\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.