Chapter 8: Problem 7
An amplifier has a gain of \(25 \mathrm{~dB}\). If the input voltage is \(15 \mathrm{mV}\) calculate the output voltage.
Chapter 8: Problem 7
An amplifier has a gain of \(25 \mathrm{~dB}\). If the input voltage is \(15 \mathrm{mV}\) calculate the output voltage.
All the tools & learning materials you need for study success - in one app.
Get started for freeCalculate the voltage gain in decibels of an amplifier where the input signal is \(0.5 \mathrm{~V}\) and the output signal is \(2.2 \mathrm{~V}\).
Expand the brackets of the following expressions: (a) \(\left(e^{x}+2\right)^{2}\) (b) \(\left(\mathrm{e}^{x}+1\right)\left(\mathrm{e}^{-x}-1\right)\) (c) \(\left(\mathrm{e}^{2 x}+\mathrm{e}^{x}\right)\left(\mathrm{e}^{-2 x}+\mathrm{e}^{-x}\right)\) (d) \(\left(1+\mathrm{e}^{2 x}+\mathrm{e}^{-2 x}\right)\left(1-\mathrm{e}^{x}\right)\)
Evaluate (a) \(\mathrm{e}^{1.6},(\mathrm{~b}) \mathrm{e}^{-1.6},(\mathrm{c}) \frac{1}{\mathrm{e}^{1.6}}\).
Solve (a) \(10^{\log x}=17\) (b) \(10^{2 \log x}=17\) (c) \(10^{x} 10^{2 x}=90\) (d) \(10^{2 x}=30\left(10^{2}\right)\)
Write the following using logarithms: (a) \(10^{2}=100\) (b) \(0.001=10^{-3}\) (c) \(\mathrm{e}^{-1.3}=0.2725\) (d) \(\mathrm{e}^{1.5}=4.4817\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.