Chapter 8: Problem 7
Prove the hyperbolic identity $$ \cosh 2 x=\sinh ^{2} x+\cosh ^{2} x $$
Chapter 8: Problem 7
Prove the hyperbolic identity $$ \cosh 2 x=\sinh ^{2} x+\cosh ^{2} x $$
All the tools & learning materials you need for study success - in one app.
Get started for freeExpress the following using indices: (a) \(\log 35=1.5441\) (b) \(\log _{6} 1296=4\) (c) \(\ln 50=3.9120\) (d) \(\log _{9} 3=0.5\)
Simplify each expression as far as possible: (a) \(\mathrm{e}^{2 x} \mathrm{e}^{7 x}\) (b) \(\left(3 \mathrm{e}^{x}\right)\left(2 \mathrm{e}^{-x}\right)\) (c) \(\mathrm{e}^{2 x}\left(\mathrm{e}^{-2 x}+\mathrm{e}^{-x}+1\right)-\mathrm{e}^{x}\left(1+\mathrm{e}^{x}\right)\) (d) \(\frac{\mathrm{e}^{-3 x}}{2 \mathrm{e}^{-x}}\)
Solve (a) \(10^{\log x}=17\) (b) \(10^{2 \log x}=17\) (c) \(10^{x} 10^{2 x}=90\) (d) \(10^{2 x}=30\left(10^{2}\right)\)
Simplify to a single logarithmic expression: (a) \(\ln 4 y+\ln x\) (b) \(3 \ln t^{2}-2 \ln t\) (c) \(3 \log t-\log 3 t\) (d) \(\log 2 x+\log 5 x-1\)
Solve (a) \(\ln x=2.4050\) (b) \(\ln x=0.9611\) (c) \(\ln x=-0.9611\) (d) \(\ln x=-2.0000\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.