Chapter 9: Problem 14
Express \(5 \cos 3 t+2 \sin 3 t\) in the form \(A \cos (\omega t+\alpha), \alpha \geq 0\)
Chapter 9: Problem 14
Express \(5 \cos 3 t+2 \sin 3 t\) in the form \(A \cos (\omega t+\alpha), \alpha \geq 0\)
All the tools & learning materials you need for study success - in one app.
Get started for freeShow \(\cos \left(360^{\circ}-\theta\right)=\cos \theta\)
Simplify \(\sin \theta \cos \theta \tan \theta+\cos ^{2} \theta\)
Solve (a) \(\sin \theta=0.3510,0^{\circ} \leq \theta \leq 360^{\circ}\) (b) \(\sin \theta=0.4161,0 \leq \theta \leq 2 \pi\) (c) \(\cos t=-0.3778,0 \leq t \leq 2 \pi\) (d) \(\cos x=0.7654,0^{\circ} \leq x \leq 360^{\circ}\) (e) \(\tan y=1.7136,0^{\circ} \leq y \leq 360^{\circ}\) (f) \(\tan y=-0.3006,0^{\circ} \leq y \leq 360^{\circ}\)
Show \(\sin \left(180^{\circ}+\theta\right)=-\sin \theta\).
Solve $$ \cos \left(\frac{\theta-30^{\circ}}{3}\right)=-0.6010 \quad 0 \leq \theta \leq 720^{\circ} $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.