Chapter 9: Problem 16
Show \(\cos \left(360^{\circ}-\theta\right)=\cos \theta\)
Chapter 9: Problem 16
Show \(\cos \left(360^{\circ}-\theta\right)=\cos \theta\)
All the tools & learning materials you need for study success - in one app.
Get started for freeShow \(\sin \left(\theta+\frac{\pi}{2}\right)=\cos \theta\)
Simplify $$ \sin A \cos A \tan A+\frac{2 \sin A \cos ^{3} A}{\sin 2 A} $$
Solve (a) \(\sin \theta=0.3510,0^{\circ} \leq \theta \leq 360^{\circ}\) (b) \(\sin \theta=0.4161,0 \leq \theta \leq 2 \pi\) (c) \(\cos t=-0.3778,0 \leq t \leq 2 \pi\) (d) \(\cos x=0.7654,0^{\circ} \leq x \leq 360^{\circ}\) (e) \(\tan y=1.7136,0^{\circ} \leq y \leq 360^{\circ}\) (f) \(\tan y=-0.3006,0^{\circ} \leq y \leq 360^{\circ}\)
Show \(\sin \left(180^{\circ}+\theta\right)=-\sin \theta\).
A voltage source, \(v(t)\), varies with time, \(t\), according to $$ v(t)=50 \sin (\pi t+10) $$ State (a) the angular frequency, (b) the phase, (c) the amplitude, (d) the period, (e) the time displacement, (f) the frequency of the voltage.
What do you think about this solution?
We value your feedback to improve our textbook solutions.