Chapter 9: Problem 21
Show \(\cos 4 A=8 \cos ^{4} A-8 \cos ^{2} A+1\).
Chapter 9: Problem 21
Show \(\cos 4 A=8 \cos ^{4} A-8 \cos ^{2} A+1\).
All the tools & learning materials you need for study success - in one app.
Get started for freeShow \(\sin 3 A=3 \sin A \cos ^{2} A-\sin ^{3} A\)
Show \(\tan \left(180^{\circ}+\theta\right)=\tan \theta\)
Convert the following angles in radians to degrees: (a) \(0.3609\) (b) \(0.4771\) (c) \(1.3692\) (d) \(\frac{\pi}{3}\) (e) \(\frac{2 \pi}{3}\) (f) \(6 \pi\) (g) \(\frac{\pi}{5}\) (h) \(\frac{3 \pi}{2}\)
(a) Sketch \(y=\cos \left(x-20^{\circ}\right)\), \(0^{\circ} \leq x \leq 360^{\circ}\) (b) On the same axes, sketch \(y=\sin x\). (c) Use your graphs to obtain approximate solutions of $$ \sin x=\cos \left(x-20^{\circ}\right) $$
Convert the following angles in degrees to radians: (a) \(12^{\circ}\) (b) \(65^{\circ}\) (c) \(200^{\circ}\) (d) \(340^{\circ}\) (e) \(1000^{\circ}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.