Chapter 9: Problem 22
Simplify $$ \sin A \cos A \tan A+\frac{2 \sin A \cos ^{3} A}{\sin 2 A} $$
Chapter 9: Problem 22
Simplify $$ \sin A \cos A \tan A+\frac{2 \sin A \cos ^{3} A}{\sin 2 A} $$
All the tools & learning materials you need for study success - in one app.
Get started for freeConvert the following angles in radians to degrees: (a) \(\frac{\pi}{2}\) (b) \(\frac{\pi}{3}\) (c) \(\frac{4 \pi}{3}\) (d) \(1.25 \pi\) (e) \(1.25\) (f) \(9.6314(\mathrm{~g}) 3\)
State (i) the amplitude and (ii) the angular frequency of the following waves: (a) \(y=2 \sin 5 t\) (b) \(y=3 \cos 6 t\) (c) \(y=\sin \frac{t}{2}\) (d) \(y=\cos \frac{4 t}{3}\) (e) \(y=\frac{3}{2} \sin \frac{2 t}{3}\)
Show \(\cos \left(180^{\circ}-\theta\right)=-\cos \theta\)
Show \(\sin \left(\frac{\pi}{2}-\theta\right)=\cos \theta\).
Show \(\cos \left(360^{\circ}-\theta\right)=\cos \theta\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.