Chapter 9: Problem 22
Solve $$ \cos \left(\frac{\theta-30^{\circ}}{3}\right)=-0.6010 \quad 0 \leq \theta \leq 720^{\circ} $$
Chapter 9: Problem 22
Solve $$ \cos \left(\frac{\theta-30^{\circ}}{3}\right)=-0.6010 \quad 0 \leq \theta \leq 720^{\circ} $$
All the tools & learning materials you need for study success - in one app.
Get started for freeConvert the following angles in radians to degrees: (a) \(0.3609\) (b) \(0.4771\) (c) \(1.3692\) (d) \(\frac{\pi}{3}\) (e) \(\frac{2 \pi}{3}\) (f) \(6 \pi\) (g) \(\frac{\pi}{5}\) (h) \(\frac{3 \pi}{2}\)
An angle \(\beta\) is such that \(\cos \beta>0\) and \(\tan \beta<0\). State the range of possible values of \(\beta\).
Simplify \(\sin \theta \cos \theta \tan \theta+\cos ^{2} \theta\)
Show \(\tan \left(180^{\circ}-\theta\right)=-\tan \theta\)
Solve (a) \(\sin \theta=0.3510,0^{\circ} \leq \theta \leq 360^{\circ}\) (b) \(\sin \theta=0.4161,0 \leq \theta \leq 2 \pi\) (c) \(\cos t=-0.3778,0 \leq t \leq 2 \pi\) (d) \(\cos x=0.7654,0^{\circ} \leq x \leq 360^{\circ}\) (e) \(\tan y=1.7136,0^{\circ} \leq y \leq 360^{\circ}\) (f) \(\tan y=-0.3006,0^{\circ} \leq y \leq 360^{\circ}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.