Chapter 9: Problem 23
Simplify $$ \tan A+\frac{1}{\tan A} $$
Chapter 9: Problem 23
Simplify $$ \tan A+\frac{1}{\tan A} $$
All the tools & learning materials you need for study success - in one app.
Get started for freeShow \(\sin \left(\theta+\frac{\pi}{2}\right)=\cos \theta\)
Convert the following angles in radians to degrees: (a) \(0.3609\) (b) \(0.4771\) (c) \(1.3692\) (d) \(\frac{\pi}{3}\) (e) \(\frac{2 \pi}{3}\) (f) \(6 \pi\) (g) \(\frac{\pi}{5}\) (h) \(\frac{3 \pi}{2}\)
Express the following angles in the form \(\alpha \pi\) radians: (a) \(90^{\circ}\) (b) \(45^{\circ}\) (c) \(60^{\circ}\) (d) \(120^{\circ}\) (e) \(240^{\circ}\) (f) \(72^{\circ}\) (g) \(216^{\circ}\) (h) \(135^{\circ}\) (i) \(108^{\circ}\) (j) \(270^{\circ}\)
Show \(\sin 3 A=3 \sin A \cos ^{2} A-\sin ^{3} A\)
Convert the following angles in radians to degrees: (a) \(\frac{\pi}{2}\) (b) \(\frac{\pi}{3}\) (c) \(\frac{4 \pi}{3}\) (d) \(1.25 \pi\) (e) \(1.25\) (f) \(9.6314(\mathrm{~g}) 3\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.