Berechnen Sie die Determinanten der folgenden 2-reihigen Matrizen: a) \(A=\left(\begin{array}{rr}2 & 3 \\ 4 & -5\end{array}\right)\) b) \(\quad B=\left(\begin{array}{ll}a & a \\ b & b\end{array}\right)\) c) \(C=\left(\begin{array}{ll}3 & 11 \\ x & 2 x\end{array}\right)\)

Short Answer

Expert verified
The determinants are: (a) -22, (b) 0, (c) -5x.

Step by step solution

01

- Determinant Formula for 2x2 Matrices

The determinant of a 2x2 matrix the matrix is given by the formula \[\text{det}(M) = ad - bc\]. where are the entries of the matrix.
02

- Calculate Determinant of Matrix A

For matrix \[A=\begin{pmatrix} 2 & 3 \ 4 & -5 \end{pmatrix}\], applying the determinant formula: \[a = 2,\ b = 3,\ c = 4,\ d = -5\] gives \[\text{det}(A) = 2 \times (-5) - 3 \times 4 = -10 - 12 = -22\].
03

- Calculate Determinant of Matrix B

For matrix \[B=\begin{pmatrix} a & a \ b & b \end{pmatrix}\], applying the determinant formula \[a = a, \ b = a, \ c = b, \ d = b\] gives \[\text{det}(B) = a \times b - a \times b = ab - ab = 0\].
04

- Calculate Determinant of Matrix C

For matrix \[C=\begin{pmatrix} 3 & 11 \ x & 2x \end{pmatrix}\], applying the determinant formula: \[a = 3, \ b = 11, \ c = x, \ d = 2x\] gives \[\text{det}(C) = 3 \times (2x) - 11 \times x = 6x - 11x = -5x\].

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

Key Concepts

These are the key concepts you need to understand to accurately answer the question.

Matrix Determinant
To understand matrix determinants, let's start with a 2x2 matrix. A 2x2 matrix has the form \[M = \begin{pmatrix} a & b \ c & d \ \end{pmatrix} \].
The determinant of a 2x2 matrix is calculated using the formula: \[ \text{det}(M) = ad - bc \].
Here, 'a', 'b', 'c', and 'd' are the elements of the matrix. The determinant gives us vital information about the matrix, such as whether the matrix is invertible or not.
For a matrix to be invertible, its determinant should not be zero. Now, let's calculate the determinants for given matrices using this formula.
Linear Algebra
Linear algebra is a branch of mathematics that deals with vectors, matrices, and linear transformations. It's widely used in various fields like physics, computer science, and engineering.
Understanding the determinant is a key part of linear algebra. The determinant helps in many applications:
  • Solving systems of linear equations.
  • Determining matrix invertibility.
  • Finding eigenvalues and eigenvectors.
Linear algebra provides the tools to work with multi-dimensional data, making it essential for understanding how high-dimensional spaces function and interact.
Matrix Calculation
Matrix calculations involve operations such as addition, subtraction, multiplication, and finding the determinant. Let's dive into the calculations for the provided matrices:
  • **Matrix A**: \[ A = \begin{pmatrix} 2 & 3 \ 4 & -5 \ \end{pmatrix} \]. Using the formula: \[ \text{det}(A) = 2 \times (-5) - 3 \times 4 = -10 - 12 = -22 \].
  • **Matrix B**: \[ B = \begin{pmatrix} a & a \ b & b \ \end{pmatrix} \]. Applying the formula: \[ \text{det}(B) = a \times b - a \times b = 0 \].
  • **Matrix C**: \[ C = \begin{pmatrix} 3 & 11 \ x & 2x \ \end{pmatrix} \]. Calculating the determinant: \[ \text{det}(C) = 3 \times (2x) - 11 \times x = 6x - 11x = -5x \].
These calculations show how the determinant formula is applied to different matrices.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Aus Band 1 , Abschnitt II.3.5 ist bekannt: Das Spatprodukt \([\vec{a} \vec{b} \vec{c}]=\vec{a} \cdot(\vec{b} \times \vec{c})\) dreier Vektoren aus dem Anschauungsraum kann aus den skalaren Vektorkomponenten mit Hilfe der Determinante $$ [\vec{a} \vec{b} \vec{c}]=\left|\begin{array}{lll} a_{x} & a_{y} & a_{z} \\ b_{x} & b_{y} & b_{z} \\ c_{x} & c_{y} & c_{z} \end{array}\right| $$ berechnet werden. Zeigen Sie, daB die drei Vektoren $$ \vec{a}=\left(\begin{array}{l} 1 \\ 2 \\ 2 \end{array}\right), \quad \vec{b}=\left(\begin{array}{r} 0 \\ -4 \\ 3 \end{array}\right) \text { und } \vec{c}=\left(\begin{array}{r} 3 \\ -6 \\ 15 \end{array}\right) $$ komplanar sind, d.h. in einer Ebene liegen.

F?r welchen Wert des Parameters \(\lambda\) sind die Vektoren $$ \mathbf{a}_{1}=\left(\begin{array}{l} 1 \\ 1 \\ 1 \end{array}\right), \quad \mathbf{a}_{2}=\left(\begin{array}{r} -\lambda \\ 2 \\ 5 \end{array}\right) \text { und } \mathbf{a}_{3}=\left(\begin{array}{r} -2 \\ \lambda \\ 7 \end{array}\right) $$ linear abh?ngig?

Matrix A beschreibt die Spiegelung eines Raumpunktes an der \(x, y\)-Ebene, Matrix B die Drehung des r?umlichen Koordinatensystems um die \(z\)-Achse um den Winkel \alpha. Zeigen Sic, daB beide Matrizen orthogonal sind. $$ \mathbf{A}=\left(\begin{array}{lll} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{array}\right), \quad B=\left(\begin{array}{ccc} \cos \alpha & \sin \alpha & 0 \\ -\sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{array}\right) $$

Welche der folgenden 3-rcihigen Matrizen sind orthogonal? $$ \begin{aligned} &\mathbf{A}=\left(\begin{array}{rrr} 1 & 0 & 1 \\ 2 & -2 & 0 \\ 0 & -1 & 3 \end{array}\right), \quad \mathrm{B}=\frac{1}{3}\left(\begin{array}{rrr} 2 & 2 & 1 \\ 1 & -2 & 2 \\ 2 & -1 & -2 \end{array}\right) \\ &C=\left(\begin{array}{ccc} 0 & 1 / \sqrt{2} & -1 / \sqrt{2} \\ 0 & 1 / \sqrt{2} & 1 / \sqrt{2} \\ 1 & 0 & 0 \end{array}\right) \end{aligned} $$

Lösen Sie die folgenden nicht-quadratischen linearen Gleichungssysteme mit Hilfe elementarer Umformungen in den Zeilen der erweiterten Koeffizientenmatrix (Gau\betascher Algorithmus): \(2 x_{1}-3 x_{2}=11\) a) \(-5 x_{1}+x_{2}=-8\) b) \(\left(\begin{array}{rrrr}1 & 1 & 2 & 0 \\ -3 & 2 & 0 & 1 \\ 8 & -2 & -2 & 2\end{array}\right)\left(\begin{array}{c}x_{1} \\ x_{2} \\ x_{3} \\\ x_{4}\end{array}\right)=\left(\begin{array}{l}1 \\ 5 \\ 0\end{array}\right)\) \(x_{1}-5 x_{2}=16\) \(3 x_{2}-5 x_{3}+x_{4}=0\) c) $$ \begin{aligned} &-x_{1}-3 x_{2}-x_{4}=-5 \\ &-2 x_{1}+x_{2}+2 x_{3}+2 x_{4}=2 \\ &-3 x_{1}+4 x_{2}+2 x_{3}+2 x_{4}=8 \end{aligned} $$

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free