Chapter 1: Problem 13
Begründen Sie, warum die folgenden Vektoren linear abh?ngig sind: a) \(\quad \mathbf{a}=\left(\begin{array}{l}1 \\ 2 \\ 5\end{array}\right), \quad \mathbf{b}=\left(\begin{array}{l}2 \\ 0 \\ 2\end{array}\right) . \quad \mathbf{c}=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)\) b) \(\quad \mathbf{a}=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right), \quad \mathbf{b}=\left(\begin{array}{r}3 \\ -1 \\ 4\end{array}\right), \quad c=\left(\begin{array}{r}-3 \\ 0 \\ -3\end{array}\right)\) c) \(\quad \mathbf{a}_{1}=\left(\begin{array}{l}1 \\ 0 \\\ 1\end{array}\right), \quad \mathbf{a}_{2}=\left(\begin{array}{l}1 \\ 1 \\\ 0\end{array}\right), \quad \mathbf{a}_{3}=\left(\begin{array}{r}0 \\ -2 \\\ 2\end{array}\right)\) d) \(\quad a=\left(\begin{array}{l}1 \\ 2\end{array}\right), \quad b=\left(\begin{array}{l}3 \\ 1\end{array}\right), \quad c=\left(\begin{array}{l}2 \\ 0\end{array}\right), \quad d=\left(\begin{array}{l}-1 \\ -1\end{array}\right)\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.