Chapter 1: Problem 6
Berechnen Sie den Wert der folgenden 4-reihigen Determinanten mit Hilfe des Laplaceschen Entwicklungssatzes: a) \(\quad\) det \(\mathbf{A}=\left|\begin{array}{rrrr}1 & 0 & 3 & 4 \\ -2 & 1 & 0 & 3 \\ 1 & 4 & 1 & 5 \\ 0 & 2 & 2 & 0\end{array}\right|\) b) \(\quad\) det \(A=\left|\begin{array}{llll}1 & 0 & 5 & 3 \\ 1 & 2 & 2 & 1 \\\ 0 & 1 & 3 & 1 \\ 4 & 0 & 2 & -3\end{array}\right|\)
Short Answer
Step by step solution
- Choose Expansion Row or Column
- Laplace Expansion for Determinant a
- Calculate 3x3 Determinants for a
- Combine 3x3 Determinants for a
- Laplace Expansion for Determinant b
- Calculate 3x3 Determinants for b
- Combine 3x3 Determinants for b
Unlock Step-by-Step Solutions & Ace Your Exams!
-
Full Textbook Solutions
Get detailed explanations and key concepts
-
Unlimited Al creation
Al flashcards, explanations, exams and more...
-
Ads-free access
To over 500 millions flashcards
-
Money-back guarantee
We refund you if you fail your exam.
Over 30 million students worldwide already upgrade their learning with Vaia!
Key Concepts
These are the key concepts you need to understand to accurately answer the question.