Chapter 1: Problem 7
Zeigen Sie, daB die Zeilen- bzw. Spaltenvektoren der 3-reihigen Matrix $$ A=\left(\begin{array}{ccc} 2 / \sqrt{5} & -1 / \sqrt{30} & -1 / \sqrt{6} \\ 1 / \sqrt{5} & 2 / \sqrt{30} & 2 / \sqrt{6} \\ 0 & 5 / \sqrt{30} & -1 / \sqrt{6} \end{array}\right) $$ ein orthonormiertes Vektorsystem bilden, die Matrix \(\mathbf{A}\) daher orthogonal ist. Bestimmen Sie die inverse Matrix \(\mathbf{A}^{-1}\) sowie die Determinante von \(\mathbf{A}\).
Short Answer
Step by step solution
- Verify Orthonormality of Row Vectors
Step 1.1 - Calculate Dot Products of Row Vectors
Step 1.2 - Normalize Each Row Vector
- Conclusion of Orthonormality
- Determine the Inverse Matrix \(A^{-1}\)
- Calculate the Determinant of Matrix \(A\)
Unlock Step-by-Step Solutions & Ace Your Exams!
-
Full Textbook Solutions
Get detailed explanations and key concepts
-
Unlimited Al creation
Al flashcards, explanations, exams and more...
-
Ads-free access
To over 500 millions flashcards
-
Money-back guarantee
We refund you if you fail your exam.
Over 30 million students worldwide already upgrade their learning with Vaia!
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Matrix Orthonormality
- Orthogonality: The vectors are perpendicular, i.e., their dot product is zero.
- Normalization: Each vector's length is one.