$$ z=f(x ; y)=5 x \cdot e^{-x y}+\ln \sqrt{x^{2}+y^{2}}+\cos (\pi x+y) $$ Berechnen Sie: \(z_{x}(1 ; 0), z_{y}(0 ; 1), z_{x y}(-1 ; 0), z_{y y}(5 ; 0), z_{x y x}(-1 ; 0)\)

Short Answer

Expert verified
The computed derivatives are: \( z_x(1; 0) = 5 \), \( z_y(0; 1) = -1 \), \( z_{xy}(-1; 0) = 5 \), \( z_{yy}(5; 0) = 0 \), \( z_{xyx}(-1; 0) = -10 \).

Step by step solution

01

- Compute the partial derivative with respect to x

The partial derivative of a function with respect to the variable x is found by differentiating the function while treating y as a constant. Therefore, start with the function \( z = 5x e^{-xy} + \ln \sqrt{x^2 + y^2} + \cos(\pi x + y) \).
02

Step 1a - Apply the product rule to the first term

The derivative of \( 5x e^{-xy} \) with respect to x is given by the product rule: \( \frac{d}{dx} [5x e^{-xy}] = 5 e^{-xy} + 5x \cdot (-y e^{-xy}) \). Simplify this to \( 5 e^{-xy} - 5xy e^{-xy} \).
03

Step 1b - Differentiate the logarithmic term

The derivative of \( \ln \sqrt{x^2 + y^2} \) with respect to x is \( \frac{1}{2} \cdot \frac{2x}{x^2 + y^2} = \frac{x}{x^2 + y^2} \).
04

Step 1c - Differentiate the cosine term

The partial derivative of \( \cos(\pi x + y) \) with respect to x is \( -\pi \cdot \sin(\pi x + y) \).
05

Step 1d - Combine partial derivatives

Combine all these results to find: \( z_x = [5 e^{-xy} - 5xy e^{-xy}] + \frac{x}{x^2 + y^2} - \pi \sin(\pi x + y) \).
06

- Compute the partial derivative with respect to y

Apply the same procedure for the partial derivative with respect to y: differentiate \( z = 5x e^{-xy} + \ln \sqrt{x^2 + y^2} + \cos(\pi x + y) \) while treating x as a constant.
07

Step 2a - Apply the product rule to the first term

The partial derivative of \( 5x e^{-xy} \) with respect to y is \( 5x \cdot (-x e^{-xy}) = -5x^2 e^{-xy} \).
08

Step 2b - Differentiate the logarithmic term

The partial derivative of \( \ln \sqrt{x^2 + y^2} \) with respect to y is \( \frac{1}{2} \cdot \frac{2y}{x^2 + y^2} = \frac{y}{x^2 + y^2} \).
09

Step 2c - Differentiate the cosine term

The partial derivative of \( \cos(\pi x + y) \) with respect to y is \( -\sin(\pi x + y) \).
10

Step 2d - Combine partial derivatives

Combine all these results to find: \( z_y = [-5x^2 e^{-xy}] + \frac{y}{x^2 + y^2} - \sin(\pi x + y) \).
11

- Compute higher-order partial derivatives

To find the mixed and second-order partial derivatives, follow a similar process: apply the partial derivative operations successively to the terms already differentiated.
12

Step 3a - Compute \( z_{xy} \)

Differentiate \( z_x \) partially with respect to y. Similarly, differentiate \( z_y \) partially with respect to x to confirm your result. Then follow the same steps for \( z_{yy} \) and \( z_{xyx} \).
13

Solutions to Partial Derivatives

Calculating each derivative at the given points: \( z_x(1; 0) = 5 \), \( z_y(0; 1) = -1 \), \( z_{xy}(-1; 0) = 5 \), \( z_{yy}(5; 0) = 0 \), \( z_{xyx}(-1; 0) = -10 \).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

Key Concepts

These are the key concepts you need to understand to accurately answer the question.

Product Rule
The product rule is essential when differentiating functions formed by the multiplication of two or more terms. It states that if you have two functions, say \(u(x)\) and \(v(x)\), their derivative is:
\[ (uv)' = u'v + uv' \]
In our exercise, we encountered the term \(5x e^{-xy}\). Here, \(u(x) = 5x\) and \(v(x) = e^{-xy}\). Applying the product rule, we differentiate each part as follows:
  • \(u'(x) = 5\)
  • \(v'(x) = -y e^{-xy}\)
Thus, the combined derivative is:
\[ \frac{d}{dx} [5x e^{-xy}] = 5 e^{-xy} + 5x \times (-y e^{-xy}) = 5 e^{-xy} - 5xy e^{-xy} \]
This same principle is applied throughout the function to ensure accurate differentiation.
Logarithmic Differentiation
Logarithmic differentiation simplifies the differentiation of more complex functions, especially those involving logarithms. It leverages the properties of logarithms to break down complex expressions into more manageable parts. In our case, we used the term \( \ln \sqrt{x^2 + y^2} \).
First, let's simplify \( \ln \sqrt{x^2 + y^2} \) to \( \frac{1}{2} \ln (x^2 + y^2) \). Now, we differentiate with respect to \( x \):
  • The chain rule gives us the differentiation part
  • We get \( \frac{1}{2} \times \frac{2x}{x^2 + y^2} = \frac{x}{x^2 + y^2} \)

This simplification streamlines the process, making it easier to understand and apply. Logarithmic differentiation is powerful for handling expressions that are products, quotients, or powers of functions.
Higher-Order Derivatives
Understanding higher-order derivatives is crucial for analyzing the behavior of functions beyond their first derivatives. Higher-order derivatives are simply derivatives of derivatives. For our exercise, we computed various second and third-order partial derivatives, such as \(z_{xy}\) and \(z_{xyx}\).
  • Found by differentiating the first derivative, \(z_x\), with respect to another variable \( y \)
  • This sequential differentiation helps us understand how the function changes in a more granular way
For instance, to find \( z_{xy} \), we differentiated \( z_x \) with respect to \( y \):
Given that \( z_x = 5e^{-xy} - 5xye^{-xy} + \frac{x}{x^2 + y^2} - \pi sin(\pi x + y) \), we partially differentiate with respect to \( y \), yielding:
\( z_{xy} = -5xe^{-xy} + 5xye^{-xy} - \frac{2xy}{(x^2 + y^2)^2} - \pi cos(\pi x + y) \).

This hierarchical process continues the analysis, exploring the deeper changes in the function and giving more insight into its behavior.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Für den Radius \(R\) und die Dichte \(\rho\) einer homogenen Kugel wurden die Werte \(\bar{R}=12,2 \mathrm{~cm}\) und \(\bar{\rho}=2,50 \mathrm{~g} / \mathrm{cm}^{3}\) ermittelt. Eine Schätzung der zugehörigen MeBunsicherheiten ergab \(\Delta R=0,15 \mathrm{~cm}\) und \(\Delta \rho=0,11 \mathrm{~g} / \mathrm{cm}^{3} .\) Welche Masse \(m\) besitzt die Kugel, mit welchem Maximalwert für die Me\betaunsicherheit von \(m\) muB man dabei rechnen?

Zeigen Sie: Die Funktion \(u(x ; y ; z)=\frac{a}{\sqrt{x^{2}+y^{2}+z^{2}}}+b\) ist eine Lôsung der sog. Laplace-Gleichung \(\Delta u=u_{x x}+u_{y y}+u_{z z}=0(a, b ;\) Konstante).

Differenzieren Sie die jeweilige Funktion \(z=f(x: y)\) mit \(x=x(t), y=y(t)\) nach dem Parameter \(t\) unter Verwendung der Kettenregel: a) \(z=\mathrm{e}^{x y} \quad\) mit \(x=t^{2}, y=t\) b) \(z=x \cdot \ln y \quad\) mit \(\quad x=\sin t, y=\cos t\) c) \(z=x^{2} \cdot \sin (2 y)\) mit \(x=t^{2}, y=t^{3}\)

Gegeben ist die Funktion \(z(x ; y)=3 x y-\cos (x-y)+x^{3} y^{5}\) Zeigen Sie die Gleichheit der folgenden partiellen Ableitungen 2. bzw. 3. Ordnung (Satz von Schwarz): a) \(z_{x y}=z_{y x}\) b) \(z_{x x y}=z_{x y x}=z_{y x x}\)

Gegeben ist ein Hohlzylinder mit dem Innenradius \(r_{1}=6 \mathrm{~cm}\), dem Außenradius \(r_{a}=10 \mathrm{~cm}\) und der H?he \(h=20 \mathrm{~cm}\). Berechnen Sie mit Hilfe des totalen DifferenTials die Volumen?nderung \(\Delta V \approx d V\), die dieser Zylinder erfahrt, wenn man die Gr??en \(r_{i}, r_{a}\) und \(h\) wie folgt ver?ndert: \(\Delta r_{i}=0,2 \mathrm{~cm}, \Delta r_{a}=-0,4 \mathrm{~cm}\), \(\Delta h=0,7 \mathrm{~cm}\). Vergleichen Sie diesen N?herungswert mit dem exakten Wert \(\Delta V_{\text {exakt }}\)

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free