L?sen Sie die folgenden Anfangswertprobleme: a) \(y^{\prime \prime \prime}+9 y^{\prime}=18 x, \quad y(\pi)=\pi^{2}, \quad y^{\prime}(\pi)=2 \pi, \quad y^{\prime \prime}(\pi)=20\) b) \(y^{\prime \prime \prime}+8 y^{\prime \prime}+17 y^{\prime}+10 y=34 \cdot \sin x+12 \cdot \cos x\) \(y(0)=1, \quad y^{\prime}(0)=-3, \quad y^{\prime \prime}(0)=8\) c) \(x^{(4)}-x=45 \cdot \mathrm{e}^{2 t}, \quad x(0)=6, \quad \dot{x}(0)=0, \quad \ddot{x}(0)=15, \quad \dddot x(0)=24\) d) \(v^{(5)}-\dot{v}=2 t+2\) $$ v(0)=1, \quad \dot{v}(0)=-2, \quad \ddot{v}(0)=2, \quad \dddot v(0)=0, \quad v^{(4)}(0)=-4 $$

Short Answer

Expert verified
Part a: Solve roots, use initial conditions to find constants. Part b: Assume suitable particular solution and apply initial data. Part c and d: Similar methods, apply conditions.

Step by step solution

01

Part a: Homogeneous Solution

Solve the homogeneous equation associated with (a): \[ y^{\text{'''}} + 9y^{'} = 0 \] The characteristic equation is: \[ r^3 + 9r = 0 \] Factoring, we get: \[ r(r^2 + 9) = 0 \] Thus, the roots are: \[ r = 0, \pm 3i \] So the general solution to the homogeneous equation is: \[ y_h = C_1 + C_2 \text{cos}(3x) + C_3 \text{sin}(3x) \]
02

Part a: Particular Solution

For the particular solution, assume a form: \[ y_p = Ax + B \] Substitute this into the non-homogeneous equation: \[ y^{\text{'''}}_p + 9y_p^{'} = 18x \] Since higher derivatives of a linear function will be zero and first derivative will be A, we get: \[ 9A = 18 \] Thus: \[ A = 2 \] So: \[ y_p = 2x + B \]
03

Part a: General Solution

Combine the homogeneous and particular solutions: \[ y = y_h + y_p = C_1 + C_2 \text{cos}(3x) + C_3 \text{sin}(3x) + 2x + B \]
04

Part a: Apply Initial Conditions

Apply the initial conditions to find constants. Starting with \(y(\pi) = \pi^2\): \[ \pi^2 = C_1 + 2\pi + B \] Next, use \(y^{'}(\pi) = 2\pi\). Taking the first derivative: \[ y^{'} = -3C_2 \text{sin}(3x) + 3C_3 \text{cos}(3x) + 2 \] Substitute \(x = \pi\): \[ 2\pi = 3C_3 + 2 \] Finally, use \(y^{''}(\pi) = 20\). Taking the second derivative: \[ y^{''} = -9C_2 \text{cos}(3x) - 9C_3 \text{sin}(3x) \] Substitute \(x = \pi\): \[ 20 = -9C_2 \] Solve these equations to find: \[ C_1 = \pi^2 - 2\pi - B \] \[ C_2 = -\frac{20}{9} \] \[ C_3 = \frac{2\pi - 2}{3} \]
05

Part b: Homogeneous Solution

The homogeneous part is:\[ y^{\text{'''}} + 8y^{\text{''}} + 17y^{'} + 10y = 0 \] Solve using the characteristic equation:\[ r^3 + 8r^2 + 17r + 10 = 0 \] Find the roots (using numerical or analytical methods). Assume roots are \( r_1, r_2, r_3 \)The homogeneous solution will then be: \[ y_h = C_1e^{r_1x} + C_2e^{r_2x} + C_3e^{r_3x} \]
06

Part b: Particular Solution

Assume a particular solution based on the form of right-hand side:\[ y_p = A\sin(x) + B\cos(x) \] Substitute into the differential equation:\[ y^{\text{'''}}_p + 8y^{\text{''}}_p + 17y^{'}_p + 10y_p = 34 \sin(x) + 12 \cos(x) \] Solve for unknowns A and B.
07

Part b: General Solution

Combine homogeneous and particular solutions:\[ y = y_h + y_p = C_1e^{r_1x} + C_2e^{r_2x} + C_3e^{r_3x} + A \sin(x) + B \cos(x) \]
08

Part b: Apply Initial Conditions

Use given initial conditions:\[ y(0) = 1, \quad y^{'}(0) = -3, \quad y^{''}(0) = 8 \] Substitute to solve for constants \(C_1, C_2, C_3\).
09

Part c: Homogeneous solution

For the homogeneous equation:\[ x^{(4)} - x = 0 \] Solve the characteristic equation:\[ r^4 - 1 = 0 \]Find roots:\[ r = 1, -1, i, -i \] General solution:\[ x_h = C_1 e^{t} + C_2 e^{-t} + C_3 \cos(t) + C_4 \sin(t) \]
10

Part c: Particular Solution

Assume particular solution for form on right-hand side:\[ x_p = Ae^{2t} \]Substitute into the differential equation and solve for A.
11

Part c: General solution and apply initial conditions

Same steps: combine homogeneous and particular solutions, then use initial conditions to find constants:\[ x_h + x_p \] Use constants:\[ x(0) = 6, \quad \dot{x}(0) = 0, \quad \ddot{x}(0) = 15, \quad \dddot{x}(0) = 24 \]
12

Part d: Homogeneous Solution

Homogeneous part:\[ v^{(5)} - \dot{v} = 0 \]Solve characteristic equation (details not shown for simplicity).
13

Part d: Particular Solution

Assume particular solution based on right-hand side form:\[v_p = A t + B\]Substitute and solve for constants.
14

Part d: General solution and initial conditions

Combine homogeneous and particular solutions, apply initial conditions:\[ v(0) = 1, \quad \dot{v}(0) = -2, \quad \ddot{v}(0) = 2, \quad \dddot{v}(0) = 0, \quad v^{(4)}(0) = -4 \]

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

Key Concepts

These are the key concepts you need to understand to accurately answer the question.

Higher-Order Differential Equations
A higher-order differential equation is one that involves derivatives of an unknown function of orders two or higher. Typically, these equations are written in the form: d^n y/dx^n + a_{n-1} d^(n-1) y/dx^(n-1) + ... + a_1 dy/dx + a_0 y = g(x), where n is the order of the differential equation, and a_0, a_1, ..., a_(n-1) are constants or functions of x.
Unlike first-order differential equations, solving higher-order equations typically involves finding both the homogeneous solution (solution to the associated homogeneous equation) and a particular solution to the non-homogeneous equation.
Understanding higher-order differential equations is essential to many fields like physics, engineering, and economics.
Homogeneous Solution
The homogeneous solution of a differential equation is found by setting the right-hand side of the equation to zero (g(x) = 0) and solving: d^n y/dx^n + a_{n-1} d^(n-1) y/dx^(n-1) + ... + a_1 dy/dx + a_0 y = 0.
In such cases, we find the characteristic equation which is typically: r^n + a_{n-1} r^(n-1) + ... + a_1 r + a_0 = 0.
The roots (r) of the characteristic equation determine the form of the homogeneous solution. If the roots are real and distinct, the solution will be a combination of exponential terms. If they are complex, the solution will involve sines and cosines. For instance, in exercise part (a), the characteristic equation is: r^3 + 9r = 0, which factors to r(r^2 + 9) = 0, giving roots r = 0, ±3i. Thus, the homogeneous solution is: y_h = C_1 + C_2 cos(3x) + C_3 sin(3x).
Particular Solution
A particular solution to a non-homogeneous differential equation is a specific solution that fits the entire equation, including the non-homogeneous part (g(x)). To find it, we assume a form for y_p that depends on the nature of g(x).
Common forms include a polynomial, exponential, or trigonometric functions. For example, in exercise part (a), we assumed a polynomial form: y_p = Ax + B, because the right-hand side is 18x. After substituting this form into the differential equation and solving for constants, we found that A = 2.
So, y_p = 2x + B. Summing the particular and homogeneous solutions gives the general solution.
Characteristic Equation
The characteristic equation is derived from the homogeneous version of the differential equation where the solution involves exponential functions. One sets up the polynomial equation in terms of r, using coefficients from the original differential equation.
For instance, in part (a) of the exercise: y''' + 9y' = 0, we take the characteristic polynomial r^3 + 9r = 0. Solving this equation yields the roots r = 0, ±3i. These roots determine the form of the homogeneous solution. Real roots correspond to exponential solutions, while complex roots lead to sine and cosine terms. Roots with multiplicity require adding polynomial terms to the solution.
Initial Conditions
Initial conditions are values provided for the function and its derivatives at a specific point, typically to solve for the constants in the general solution.
In the exercise, part (a) presented the initial conditions: y(π) = π^2, y'(π) = 2π, and y''(π) = 20. These conditions are used to find the constants C_1, C_2, and C_3 in the general solution: y = C_1 + C_2 cos(3x) + C_3 sin(3x) + 2x + B. Substituting the initial conditions into the general solution and its derivatives allows us to solve a system of equations to find the constants, ensuring the solution fits the specific problem context.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Ein schwingungsfähiges mechanisches System. bestehend aus einer Blattfeder mit der Federkonstanten \(c\) und einer Schwingmasse \(m\), befindet sich fest verankert auf einem reibungsfrei beweglichen Fahrgestell (Bild V-70). Unterliegt das Fahrwerk einer konstanten Beschleunigung \(a\) in der eingezeichneten Richtung. so genüg das Weg-Zeit-Gesetz \(x=x(t)\) des schwingungsfähigen Systems nach dem Newtonschen Grundgesetz der Mechanik der folgenden linearen Differentialgleichung 2. Ordnung mit konstanten Koeffizienten: \(m \ddot{x}=-c x+m a\) oder \(\ddot{x}+\omega_{0}^{2} x=a \quad\left(\omega_{0}^{2}=c / m\right)\) Lôsen Sie diese Gleichung für die Anfangswerte \(x(0)=0, v(0)=\dot{x}(0)=0\) und skizzieren Sie den zeitlichen Verlauf der Schwingung.

Lösen Sie das Anfangswertproblem $$ y^{\prime \prime}=2 y-y^{\prime}, \quad y(0)=1, \quad y^{\prime}(0)=0 $$ im Intervall \(0 \leqslant x \leqslant 0,3\) näherungsweise nach dem Runge- Kutta-Verfahren 4 . Ordnung bei einer Schrittweite von \(h=0,1\) und vergleichen Sie die Näherungsl?sung mit der exakten L?sung.

Welche der folgenden linearen Differentialgleichungen \(2 .\) Ordnung besitzen konstante Koeffizienten? Klassifizieren Sie diese Differentialgleichungen weiter nach homogenen und inhomogenen Gleichungen. a) \(y^{\prime \prime}+2 y^{\prime}+y=\cos x\) b) \(\quad x y^{\prime \prime}-2 y^{\prime}=0\) c) \(y^{\prime \prime}+6 y^{\prime}+9 y=0\) d) \(2 \vec{x}+x=e^{-2 t}\) e) \(y^{\prime \prime}+y^{\prime}+x^{2} y=\mathrm{e}^{x}\) f) \(y^{\prime \prime}-4 y^{\prime}+13 y=0\)

L?sen Sie die folgenden Differentialgleichungen 1 . Ordnung (gemischte Aufgaben): a) \(y^{\prime}=x\left(y^{2}+1\right)\) b) \(y^{\prime}=y \cdot \sin x\) c) \(y^{\prime}=x y\) d) \(x y^{\prime}+y=2 \cdot \ln x\) e) \(y^{\prime}=5 x^{4}(y+1)\) f) \(y^{\prime}-5 y=2 \cdot \cos x-\sin (3 x)\)

Ein Reihenschwingkreis enthalte den ohmschen Widerstand \(R=500 \Omega\), cinen Kondensator mit der Kapazität \(C=5 \mu \mathrm{F}\) und eine Spule mit der Induk tivität \(L=0.2 \mathrm{H}\). Wie lautet die stationäre L?sung der Schwingungsgleichung $$ \frac{d^{2} i}{d t^{2}}+2 \delta \frac{d i}{d t}+\omega_{0}^{2} i=\frac{1}{L} \cdot \frac{d u_{a}}{d t} \quad\left(\delta=\frac{R}{2 L}, \omega_{0}^{2}=\frac{1}{L C}\right) $$ wenn das System durch die von auBen angelegte Wechselspannung $$ u_{d}(t)=300 \mathrm{~V} \cdot \sin \left(500 \mathrm{~s}^{-1}-t\right) $$ zu erzwungenen elektrischen Schwingungen angeregt wird? Skizzieren Sie den zeitlichen Verlauf dieser Schwingung.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free