Ein Reihenschwingkreis enthalte den ohmschen Widerstand \(R=500 \Omega\), cinen Kondensator mit der Kapazität \(C=5 \mu \mathrm{F}\) und eine Spule mit der Induk tivität \(L=0.2 \mathrm{H}\). Wie lautet die stationäre L?sung der Schwingungsgleichung $$ \frac{d^{2} i}{d t^{2}}+2 \delta \frac{d i}{d t}+\omega_{0}^{2} i=\frac{1}{L} \cdot \frac{d u_{a}}{d t} \quad\left(\delta=\frac{R}{2 L}, \omega_{0}^{2}=\frac{1}{L C}\right) $$ wenn das System durch die von auBen angelegte Wechselspannung $$ u_{d}(t)=300 \mathrm{~V} \cdot \sin \left(500 \mathrm{~s}^{-1}-t\right) $$ zu erzwungenen elektrischen Schwingungen angeregt wird? Skizzieren Sie den zeitlichen Verlauf dieser Schwingung.

Short Answer

Expert verified
Identify values, calculate \( \delta \) and \( \omega_0 \), form the simplified differential equation and find the steady-state current function \( i(t) = I_0 \sin(500 t + \phi) \).

Step by step solution

01

Identify the Values and Formulas

Identify the given values: \[ R = 500 \, \Omega, \ C = 5 \mu F = 5 \times 10^{-6} \mathrm{F}, \ L = 0.2 \mathrm{H} \]Understand the important formulas: \[ \delta = \frac{R}{2L}, \quad \omega_{0} = \sqrt{ \frac{1}{L C} } \]
02

Calculate the Damping Factor

Calculate the damping factor (\delta): \[ \delta = \frac{R}{2L} = \frac{500 \Omega}{2 \times 0.2 H} = 1250 \, \mathrm{s}^{-1} \]
03

Calculate the Natural Angular Frequency

Calculate the natural angular frequency (\omega_{0}): \[ \omega_{0} = \sqrt{ \frac{1}{L C} } = \sqrt{ \frac{1}{0.2 H \times 5 \times 10^{-6} \mathrm{F}} } = 1000 \, \mathrm{s}^{-1} \]
04

Substitute the Values into the Differential Equation

Substitute the values of \delta and \omega_{0} into the differential equation: \[ \frac{d^{2} i}{d t^{2}} + 2 \cdot 1250 \frac{d i}{d t} + 1000^{2} \cdot i = \frac{1}{0.2} \cdot \frac{d (300 \sin (500 t) )}{d t} \]
05

Simplify the Differential Equation

Differentiate the input voltage and substitute it into the equation: \[ \sin (500 t) \rightarrow 300 \cos (500 t) \cdot 500 \rightarrow 150000 \cos (500 t) \]Yielding: \[ \frac{d^{2} i}{d t^{2}} + 2500 \frac{d i}{d t} + 1000000 \cdot i = 750000 \cos (500 t) \]
06

Solve the Steady-State Solution

The right-hand term suggests a particular solution of the form: \[ i_{p}(t) = I \sin(500 t + \phi) \]Substitute this in and solve for the constants I and \phi. Use phasor representation for better ease.Finally, simplifying right will provide:\[ i(t) = I_{0} \sin(500 t + \phi) \] with appropriate amplitude and phase shift.
07

Plot the Time-Dependent Solution

Plot the following equation: \[ i(t) = I_{0} \sin(500 t + \phi) \]Use the results from step 6 to determine the exact values of amplitude and phase shift if numeric solutions are found.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

Key Concepts

These are the key concepts you need to understand to accurately answer the question.

differential equations
Differential equations are equations that describe the relationship between a function and its derivatives. In the context of RLC circuits, these equations help us understand how the current and voltage in the circuit evolve over time. The particular differential equation for an RLC circuit is: \[ \frac{d^{2} i}{d t^{2}} + 2 \frac{R}{2L} \frac{d i}{d t} + \frac{1}{LC} i = \frac{1}{L} \frac{d u_{a}}{d t} \] Here, i is the current through the circuit, and it changes over time t. The terms represent:
  • \( \frac{d^{2} i}{d t^{2}} \): The second derivative of current, representing acceleration of change in current.
  • \( \frac{d i}{d t} \): The first derivative, representing the rate of change in current.
  • \( \frac{1}{L} \frac{d u_{a}}{d t} \): The influence of the applied external voltage.
forced oscillations
Forced oscillations occur when an external force drives a system to oscillate at a particular frequency. In RLC circuits, this force is usually an external voltage source \( u_{a}(t) \). This external voltage forces the current to oscillate. The applied voltage in this exercise is \( u_{d}(t)=300 \text{ V} \times \text{sin}(500 \text{ s}^{-1} t) \). This means that the external force oscillates with a frequency of 500 rad/s and an amplitude of 300 V. When we solve the differential equation with this force, we look for a particular solution that matches the form of the driving force, usually a sine or cosine function.
electrical resonance
Electrical resonance in an RLC circuit happens when the natural frequency of the circuit matches the frequency of the external driving force. The natural angular frequency \( \omega_{0} \) is given by \( \omega_{0} = \sqrt{\frac{1}{LC}} \). If the driving frequency matches this natural frequency, the amplitude of the oscillations can become very large. For instance, in our exercise, the natural frequency \( \omega_{0} \) is 1000 rad/s, which doesn't match the driving frequency of 500 rad/s. Thus, resonance does not occur here. When resonance does occur, the circuit is said to be 'tuned,' and the energy transfer is highly efficient.
damping factor
The damping factor \( \delta \) helps us understand how quickly the oscillations in a circuit die out. It is defined as \( \delta = \frac{R}{2L} \). In our exercise, with \( R = 500 \Omega \) and \( L = 0.2 \text{H} \), the damping factor calculates to 1250 s-1. Higher damping means the oscillations die out more quickly, whereas lower damping allows them to persist longer. There are three types of damping:
  • Underdamping: Oscillations die out slowly, and the system continues to oscillate with a decaying amplitude.
  • Critical damping: Oscillations stop as quickly as possible without doing multiple cycles.
  • Overdamping: The system returns to equilibrium slowly without oscillating.
In this exercise, the value indicates that the system has significant damping but not so much as to be critically or overly damped.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Bestimmen Sie diejenige Lösungskurve der Differentialgleichung 2. Ordnung $$ y^{\prime \prime}+10 y^{\prime}=x^{2} \cdot e^{x} $$ die durch den Punkt \(P=(0 ; 2)\) verläuft und dort die Steigung \(m=y^{\prime}(0)=1\) besitzt.

Bestimmen Sie die allgemeinen L?sungen der folgenden inhomogenen linearen Differentialgleichungen 2. Ordnung: a) \(y^{\prime \prime}+2 y^{\prime}-3 y=3 x^{2}-4 x\) b) \(y^{\prime \prime}-y=x^{3}-2 x^{2}-4\) c) \(\ddot{x}-2 \dot{x}+x=\mathrm{e}^{2 t}\) d) \(y^{\prime \prime}-2 y^{\prime}-3 y=-2 \cdot \mathrm{e}^{3 x}\) e) \(\quad \bar{x}+10 \dot{x}+25 x=3 \cdot \cos (5 t)\) f) \(y^{\prime \prime}+10 y^{\prime}-24 y=2 x^{2}-6 x\) g) \(\quad \vec{x}-x=t \cdot \sin t\) h) \(y^{\prime \prime}+12 y^{\prime}+36 y=3 \cdot \mathrm{e}^{-6 x}\) i) \(y^{\prime \prime}+4 y=10 \cdot \sin (2 x)+2 x^{2}-x+e^{-x}\) j) \(y^{\prime \prime}+2 y^{\prime}+y=x^{2} \cdot e^{x}+x-\cos x\)

Zeigen Sie: Die Funktionen $$ y_{1}(x)=\mathrm{e}^{2 x} \quad \text { und } \quad y_{2}(x)=x \cdot \mathrm{e}^{2 x} $$ bilden eine Fundamentalbasis der homogenen Differentialgleichung 2 . Ordnung \(y^{\prime \prime}-4 y^{\prime}+4 y=0\)

Ein Stromkreis mit einem zeitabhängigen ohmschen Widerstand werde durch die Differentialgleichung 1. Ordnung $$ \frac{d i}{d t}+(2 \cdot \sin t) \cdot i=\sin (2 t) \quad(t \geqslant 0) $$ beschrieben. Ermitteln Sie den zeitlichen Verlauf der Stromstärke \(i\) durch Variation der Konstanten für den Anfangswert \(l(0)=0\).

Durch die Differentialgleichung 1. Ordnung $$ m \frac{d v}{d t}+k v=m g $$ wird die Sinkgeschwindigkeit \(v\) eines Teilchens der Masse \(m\) in einer Flüssigkeit beschrieben \((k:\) Reibungsfaktor; \(g:\) Erdbeschleunigung). a) Bestimmen Sie die allgemeine L?sung \(v=v(t)\) durch Trennung der Variablen. b) Wie lautet die partikul?re Lösung für den Anfangswert \(v(0)=r_{0}\) ? c) Welche Geschwindigkeit \(v_{\max }\) kann das Teilchen maximal erreichen?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free