Zeigen Sie: Die Differentialgleichung 2. Ordnung \(\vec{x}+2 \dot{x}+2 x=0\) besitzt die linear unabhängigen L?sungen $$ x_{1}=e^{-t} \cdot \sin t \quad \text { und } \quad x_{2}=e^{-t} \cdot \cos t $$ Wie lautet die allgemeine Lösung dieser Differentialgleichung?

Short Answer

Expert verified
The general solution is \(x(t) = c_1 e^{-t} \sin t + c_2 e^{-t} \cos t\).

Step by step solution

01

- Write down the Differential Equation

Consider the second-order differential equation given: \[ \frac{d^2 x}{dt^2} + 2\frac{dx}{dt} + 2x = 0 \]
02

- Verify Independent Solutions

It is given that two independent solutions are \(x_{1} = e^{-t} \sin t\) and \(x_{2} = e^{-t} \cos t\). To verify they are solutions, substitute them into the original differential equation.
03

- Verify \(x_{1} = e^{-t}\sin t\)

Calculate the first and second derivatives of \(x_{1}\):
04

cont'd

\[\begin{align*}\dot{x}_1 &= \frac{d}{dt} \left( e^{-t} \sin t \right) = -e^{-t} \sin t + e^{-t} \cos t\ddot{x}_1 &= \frac{d}{dt} \left( -e^{-t} \sin t + e^{-t} \cos t \right) = e^{-t} \sin t - 2e^{-t} \cos t - e^{-t} \sin t = -2e^{-t} \cos t\end{align*}\]Substituting \(x_{1}\), \(\dot{x}_{1}\), and \(\ddot{x}_{1}\) into the original equation:
05

cont'd

\[\ddot{x}_1 + 2\dot{x}_1 + 2x_1 = -2e^{-t} \cos t + 2 \left( -e^{-t} \sin t + e^{-t} \cos t \right) + 2e^{-t} \sin t = -2e^{-t} \cos t + 2e^{-t} \cos t = 0\]
06

- Verify \(x_{2} = e^{-t}\cos t\)

Calculate the first and second derivatives of \(x_{2}\):
07

cont'd

\[\begin{align*}\dot{x}_2 &= \frac{d}{dt} \left( e^{-t} \cos t \right) = -e^{-t} \cos t - e^{-t} \sin t\ddot{x}_2 &= \frac{d}{dt} \left( -e^{-t} \cos t - e^{-t} \sin t \right) = e^{-t} \cos t + 2e^{-t} \sin t - e^{-t} \cos t = 2e^{-t} \sin t\end{align*}\]Substituting \(x_{2}\), \(\dot{x}_{2}\), and \(\ddot{x}_{2}\) into the original equation:
08

cont'd

\[\ddot{x}_2 + 2\dot{x}_2 + 2x_2 = 2e^{-t} \sin t + 2 \left( -e^{-t} \cos t - e^{-t} \sin t \right) + 2e^{-t} \cos t = 2e^{-t} \sin t - 2e^{-t} \sin t = 0\]
09

- Write the General Solution

Since \(x_{1}\) and \(x_{2}\) are linearly independent solutions, the general solution to the differential equation is given by: \[x(t) = c_1 e^{-t} \sin t + c_2 e^{-t} \cos t\], where \(c_1\) and \(c_2\) are arbitrary constants.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

Key Concepts

These are the key concepts you need to understand to accurately answer the question.

general solution
A general solution of a differential equation encompasses all possible solutions, representing a family of curves. For the given second-order differential equation \( \frac{d^2 x}{dt^2} + 2\frac{dx}{dt} + 2x = 0 \), we aim to find a form of \( x(t) \) that includes all potential solutions.
We start by identifying individual solutions that satisfy the equation. In our case, these solutions are \( x_1 = e^{-t} \sin t \) and \( x_2 = e^{-t} \cos t \). With these specific solutions confirmed, the general solution can be expressed as a linear combination:
\[ x(t) = c_1 e^{-t} \sin t + c_2 e^{-t} \cos t \]
Here, \( c_1 \) and \( c_2 \) are arbitrary constants. These constants account for the diverse nature of initial conditions, ensuring every possible solution to the differential equation is covered by this general form.
independent solutions
Independent solutions of a differential equation are critical because they expand the solution space, allowing us to construct a general solution. For two solutions to be independent, their linear combination must produce no other trivial solutions.
In our exercise, we have \( x_{1}=e^{-t} \sin t \) and \( x_{2}=e^{-t} \cos t \). To verify their independence, we substitute these solutions into the original differential equation and confirm they satisfy it independently.
Specifically, independent solutions ensure their Wronskian is non-zero. The Wronskian, \( W(x_{1}, x_{2}) \), is given by:
\[ W(x_{1}, x_{2}) = x_{1}\frac{d}{dt}x_{2} - x_{2}\frac{d}{dt}x_{1} \]
When this Wronskian is non-zero, the solutions are guaranteed to be independent, thus suitable for constructing the general solution.
differentiation
Differentiation is a fundamental tool used to verify whether given functions solve a differential equation. For our problem, we need first and second derivatives of the solutions \( x_1 \) and \( x_2 \).
For \( x_1 = e^{-t} \sin t \):
\( -d/dt = \frac{d}{dt} (e^{-t} \sin t) = -e^{-t} \sin t + e^{-t} \cos t \)
\( -d^2/dt^2 = \frac{d}{dt} (-e^{-t} \sin t + e^{-t} \cos t) = -2 e^{-t} \cos t \)
Substituting into the original equation confirms \( x_1 \) solves it.
Similarly for \( x_2 = e^{-t} \cos t \):
\( -d/dt = \frac{d}{dt} (e^{-t} \cos t) = -e^{-t} \cos t - e^{-t} \sin t \)
\( -d^2/dt^2 = \frac{d}{dt} (-e^{-t} \cos t - e^{-t} \sin t) = 2 e^{-t} \sin t \)
Substituting into the original equation confirms \( x_2 \) solves it.
This process of differentiation and substitution is crucial for validating candidate solutions.
linear independence
Linear independence is essential in solving differential equations because it ensures that our solutions broaden the solution space. Two functions are linearly independent if no constant exists that can combine them into zero, except the trivial solution where all constants are zero.
In mathematical terms, for functions \( x_1 \) and \( x_2 \), if their Wronskian is non-zero, they are linearly independent.
For our exercise:
\[ x_1 = e^{-t} \sin t \quad \text{and} \quad x_2 = e^{-t} \cos t \]
Their Wronskian is:
\[ W(x_1, x_2) = x_1 \frac{d}{dt} x_2 - x_2 \frac{d}{dt} x_1 \]
Calculating the derivatives and substituting them, we find:
\[ W(e^{-t} \sin t, e^{-t} \cos t) = e^{-t} \sin t (-e^{-t} \cos t - e^{-t} \sin t) - e^{-t} \cos t (-e^{-t} \sin t + e^{-t} \cos t) \]
Simplifying this expression, we see that the Wronskian is indeed non-zero, thus confirming that \( x_1 \) and \( x_2 \) are linearly independent solutions, suitable for forming the general solution.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Ein Kondensator mit der Kapazit?t \(C=5 \mu \mathrm{F}\) wird zunächst auf \(u_{0}=100 \mathrm{~V}\) aufgeladen und anschlieBend über einen ohmschen Widerstand von \(R=500 \Omega\) und eine Spule mit der Induktivit?t \(L=0,2 \mathrm{H}\) entladen (Bild V-69). Bestimmen Sie den zcitlichen Verlauf der Stromstärke \(i=i(t)\) in diesem Reihenschwingkreis. Anleitung: Lösen Sie die Schwingungsgleichung $$ \frac{d^{2} i}{d t^{2}}+2 \delta \frac{d i}{d t}+\omega_{0}^{2} i=0 \quad\left(\delta=\frac{R}{2 L}, \omega_{0}^{2}=\frac{1}{L C}\right) $$ für die Anfangswerte \(i(0)=0, u_{C}(0)=u_{0} .\) Zwischen der Kondensatorspannung \(u_{C}(t)\), der Kondensatorladung \(q(t)\) und der Stromstärke \(i(t)\) bestehen dabei die folgenden Zusammenh?nge: $$ C=\frac{q}{u_{C}}, \quad i=-\dot{q} \Rightarrow u_{C}(t)=\frac{1}{C} q(t)=-\frac{1}{C} \cdot \int i(t) d t $$

Welche der folgenden Differentialgleichungen 1 . Ordnung sind linear, welche nichtlinear? Unterscheiden Sie dabei die linearen Differentialgleichungen nach homogenen und inhomogenen Differentialgleichungen. a) \(y^{\prime}=x y\) b) \(\quad x^{3} y^{\prime}-y=2 x y^{2}\) c) \(y^{\prime}-2 y=\sin x\) d) \(y^{\prime} \cdot \cos x-y+\sin x=1\) e) \(\quad y^{\prime} y^{2}+x^{2}=1\) f) \(y^{\prime}=\sqrt{y}\) g) \(L \frac{d i}{d t}+R i=u(t)\) h) \(y^{\prime}-x\left(1+y^{2}\right)\) i) \(x y^{\prime}+y=\ln x\) j) \(m \dot{v}+k v=m g\) k) \(\quad y^{\prime} \sqrt{y}-x=0\) l) \(y^{\prime}=5 x^{4}(y+1)\)

L?sen Sie die folgenden homogenen Differentialgleichungssysteme 2. Ordnung mit Hilfe des Exponentialansatzes: a) \(\begin{aligned} y_{1}^{\prime} &=-2 y_{1}-2 y_{2} \\ y_{2}^{\prime} &=y_{1} \end{aligned}\) b) \(\quad \begin{aligned} \dot{x}_{1}=x_{1}+2 x_{2} \\ \dot{x}_{2}=& x_{2} \end{aligned}\) c) \(\begin{aligned} y_{1}^{\prime} &=y_{2} \\ y_{2}^{\prime} &=-16 y_{1} \end{aligned}\) d) \(y_{1}^{\prime}=7 y_{1}-15 y_{2}\) \(y_{2}^{\prime}=3 y_{1}-5 y_{2}\) e) \(\dot{x}_{1}=-3 x_{1}-2 x_{2}\) \(\dot{x}_{2}=6 x_{1}+3 x_{2}\) f) \(y_{1}^{\prime}=6 y_{1}-3 y_{2}\) \(y_{2}^{\prime}=2 y_{1}+y_{2}\)

Lösen Sie die folgenden Anfangswertprobleme: a) \(y^{\prime}+4 y=x^{3}-x, \quad y(1)=2\) b) \(y^{\prime}-y=\mathrm{e}^{x}, \quad y(0)=1\) c) \(y^{\prime}+3 y=-\cos x, \quad y(0)=5\)

Lösen Sie die folgenden Anfangswertprobleme durch Trennung der Variablen: a) \(y^{\prime}+(\cos x) \cdot y=0, \quad y\left(\frac{\pi}{2}\right)=2 \pi\) b) \(x(x+1) y^{\prime}=y, \quad y(1)=\frac{1}{2}\) c) \(y^{2} y^{\prime}+x^{2}=1, \quad y(2)=1\)

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free