Chapter 6: Problem 1
Bestimmen Sie mit Hilfe der Definitionsgleichung der Laplace-Transformation die Bildfunktionen der folgenden Originalfunktionen: a) \(f(t)=\cos (\omega t)\) b) \(f(t)=2 t+\mathrm{e}^{-4 t}\) c) \(f(t)=\mathrm{e}^{-\phi t} \cdot \sin (\omega t)\) d) \(f(t)=\sinh (a t)\) e) \(f(t)=t^{3}\) f) \(f(t)=\sin ^{2} t\)
Short Answer
Step by step solution
- Definition of the Laplace Transform
- Transformation of \(f(t)=\cos (\omega t)\)
- Transformation of \(f(t)=2t + \mathrm{e}^{-4t}\)
- Transformation of \(f(t)=\mathrm{e}^{-\phi t}\cdot\sin(\omega t)\)
- Transformation of \(f(t)=\sinh(at)\)
- Transformation of \(f(t)=t^{3}\)
- Transformation of \(f(t)=\sin^{2}(t)\)
Unlock Step-by-Step Solutions & Ace Your Exams!
-
Full Textbook Solutions
Get detailed explanations and key concepts
-
Unlimited Al creation
Al flashcards, explanations, exams and more...
-
Ads-free access
To over 500 millions flashcards
-
Money-back guarantee
We refund you if you fail your exam.
Over 30 million students worldwide already upgrade their learning with Vaia!
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Laplace Transform definition
Transforming trigonometric functions
Start with the definition: \[ \text{L}\{\cos(\omega t)\} = \int_{0}^{\infty} \cos(\omega t) \mathrm{e}^{-st} \ \mathrm{d}t \]Using integration properties, you get: \[ \text{L}\{\cos(\omega t)\} = \frac{s}{s^{2} + \omega^{2}} \]Similarly, for transforms involving \( \sin(\omega t) \), the process is similar but results in different denominators. These results help in understanding oscillatory systems and their behavior in the frequency domain.
Transforming exponential functions
Transforming polynomial functions
Hyperbolic functions Laplace Transform
Hyperbolic functions provide insights into various behaviors in engineering, enhancing the analysis of non-oscillatory but exponentially varying processes.