For a Higgs boson with \(m_{H}>2 m_{W,}\) the dominant decay mode is into two
on-shell \(W\) bosons, \(H \rightarrow W^{+} W^{-}\). The matrix element for this
decay can be written
$$
\mathcal{M}=-g_{\mathrm{w}} m_{\mathrm{W}} g_{\mu v}
\epsilon^{\mu}\left(p_{2}\right)^{*} \epsilon^{v}\left(p_{3}\right)^{*}
$$
where \(p_{2}\) and \(p_{3}\) are respectively the four-momenta of the
\(\mathrm{W}^{+}\)and \(\mathrm{W}^{-}\).
(a) Taking \(\mathbf{p}_{2}\) to lie in the positive \(z\)-direction, consider the
nine possible polarisation states of the \(W^{+} W^{-}\) and show that the
matrix element is non-zero only when both \(W\) bosons are left-handed
\(\left(M_{\downarrow \downarrow}\right)\), both \(W\) bosons are right-handed
\(\left(\mathcal{M}_{\uparrow \uparrow}\right)\), or both are longitudinally
polarised \(\left(\mathcal{M}_{L L}\right)\).
(b) Show that
$$
\mathcal{M}_{\Pi \uparrow}=\mathcal{M}_{\downarrow \downarrow}=-g_{w} m_{W}
\quad \text { and } \quad \mathcal{M}_{L
L}=\frac{g_{w}}{m_{W}}\left(\frac{1}{2} m_{H}^{2}-m_{W}^{2}\right)
$$
(c) Hence show that
$$
\Gamma\left(H \rightarrow W^{+} W^{-}\right)=\frac{G m_{H}^{3}}{8 \pi
\sqrt{2}} \sqrt{1-4 \lambda^{2}}\left(1-4 \lambda^{2}+12 \lambda^{4}\right)
$$
where \(\lambda=m_{\mathrm{W}} / m_{\mathrm{H}}\).