Chapter 2: Problem 16
Show that the operators \(\hat{S}_{i}=\frac{1}{2} \sigma_{i}\), where \(\sigma_{j}\) are the three Pauli spin-matrices, $$ \hat{S}_{x}=\frac{1}{2}\left(\begin{array}{ll} 0 & 1 \\ 1 & 0 \end{array}\right), \quad \hat{S}_{y}=\frac{1}{2}\left(\begin{array}{rr} 0 & -i \\ 1 & 0 \end{array}\right) \quad \text { and } \quad \hat{S}_{2}=\frac{1}{2}\left(\begin{array}{rr} 1 & 0 \\ 0 & -1 \end{array}\right), $$ satisfy the same algebra as the angular momentum operators, namely $$ \left[\hat{S}_{x}, \hat{S}_{y}\right]=i \hat{S}_{2}, \quad\left[\hat{S}_{y}, \hat{S}_{z}\right]=\hat{S}_{x} \quad \text { and } \quad\left[\hat{S}_{z}, \hat{S}_{x}\right]=i \hat{S}_{y} . $$ Find the eigenvalue(s) of the operator \(\hat{S}^{2}=\frac{1}{4}\left(\hat{S}_{x}^{2}+\hat{S}_{y}^{2}+\hat{S}_{2}^{2}\right)\), and deduce that the eigenstates of \(\hat{S}_{2}\) are a suitable representation of a spin-half particle.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.