The angles between S and μSand between L and μLare 180o. What is the angle between J and μJ in a2p32state of hydrogen?

Short Answer

Expert verified

Angle between J and μJin a 2p32 state of hydrogen is 1670.

Step by step solution

01

Magnitude of orbital, spin, total angular momentum of  L,S,J.

Magnitudes of orbital angular momentum Lis given by-

L=l(l+1)h

Magnitudes of spin angular momentum Sis given by-

S=s(s+1)h …(1)

And Magnitudes of total angular momentum Jis given by

J=j(j+1)h

Magnetic dipole vector

μJ=e2me(L+2S) …(2)

02

 Determination of angle.

We know that

J.μJ=JμJcosθcosθ=J.μJJμJθ=cos-1J.μJJμJ

Rewritten in terms of L and S using equations (2).

θ=cos-1L+S.-e2meL+2SJμJθ=cos-1-e2meL+S.L+2SJμJθ=cos-1-e2meL.L+2S.S+3L.sJμJ

Squared A.A=A2,

Then, Equation can be simplified:

role="math" localid="1658403367529" θ=cos-1-e2meL.L+2S.S+3L.SJμJ=cos-1-e2meL2+2S2+3L.SJμJ.μJθ=cos-1-e2meL2+2S2+3L×SJμJ=cos-1-e2meL2+2S2+3L.SJ-e2meL+2S.-e2meL+2S=cos-1-e2meL2+2S2+3L.SJe2me2L.L+4S.S+4L.S=cos-1-e2meL2+2S2+3L.SJe2meL.L+4S.S+4L.Sθ=cos-1-L2+2S2+3L.SJL2+4S2+4L.S…(3)

03

Spin-Orbit Coupling L.S.

J=L+SJ.J=L+S.L+SJ.J=L.L+S.S+2L.S2L.S=J.J-L.L-S.S2L.S=J2-L2-S2L.S=J2-L2-S22

role="math" localid="1658404178766" θ=cos-1-L2+2S2+3L.SJL2+4S2+4L.S=cos-1-L2+2S2+3J2-L2-S22JL2+4S2+4J2-L2-S22=cos-1-L2+2S2+32J2-L2-S2JL2+4S2+2J2-L2-S2=cos-1-L2+2S2+32J2-32L2-32S2JL2+4S2+2J2-2L2-2S2θ=cos-1-3J2-L2+S22J2J2-L2+2S2

role="math" localid="1658404753019" θ=cos-1-3152h2-2h2+32h22152h2152h2-2h2+232h2=cos-1-454h2-2h2+34h215h152h2-2h2+32h2=cos-1-10h215h7h2

θ=cos-1-10h2h2105=cos-1-10105=167.40

Hence the angle is 167.40.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free