What are the rms speeds of helium atoms, and nitrogen, hydrogen, and oxygen molecules at \(25^{\circ} \mathrm{C} ?\)

Short Answer

Expert verified
Answer: The approximate rms speeds at 25°C are: - Helium atoms: 1367 m/s - Nitrogen molecules: 515 m/s - Hydrogen molecules: 1929 m/s - Oxygen molecules: 482 m/s

Step by step solution

01

Temperature conversion

To convert from Celsius to Kelvin, add 273.15: \(T=25^{\circ} \mathrm{C} + 273.15 = 298.15\ \mathrm{K}\) Now, we will find the molar mass of each gas particle and convert it to the mass of a single particle in kilograms: For helium atom: \(M_{He} = 4.0026\ \mathrm{g/mol}\) or \(4.0026 \times 10^{-3}\ \mathrm{kg/mol}\) For nitrogen molecule: \(M_{N_2} = 28.0134\ \mathrm{g/mol}\) or \(28.0134 \times 10^{-3}\ \mathrm{kg/mol}\) For hydrogen molecule: \(M_{H_2} = 2.01588\ \mathrm{g/mol}\) or \(2.01588 \times 10^{-3}\ \mathrm{kg/mol}\) For oxygen molecule: \(M_{O_2} = 31.9988\ \mathrm{g/mol}\) or \(31.9988 \times 10^{-3}\ \mathrm{kg/mol}\) The Avogadro constant denoted as \(N_A\) is \(6.022 \times 10^{23}\ \mathrm{mol^{-1}}\). Now, we will calculate the mass of a single particle for each type of gas using the formula: \(m = \frac{M}{N_A}\) For helium atom: \(m_{He} = \frac{4.0026 \times 10^{-3}}{6.022 \times 10^{23}}\ \mathrm{kg}\) For nitrogen molecule: \(m_{N_2} = \frac{28.0134 \times 10^{-3}}{6.022 \times 10^{23}}\ \mathrm{kg}\) For hydrogen molecule: \(m_{H_2} = \frac{2.01588 \times 10^{-3}}{6.022 \times 10^{23}}\ \mathrm{kg}\) For oxygen molecule: \(m_{O_2} = \frac{31.9988 \times 10^{-3}}{6.022 \times 10^{23}}\ \mathrm{kg}\) Now, we will calculate the rms speed for each particle using the equation: \(v_{rms} = \sqrt{\frac{3kT}{m}}\) For helium atom:
02

rms speed of helium

\(v_{rms_{He}} = \sqrt{\frac{3(1.38 \times 10^{-23})(298.15)}{4.0026 \times 10^{-3}/(6.022 \times 10^{23})}} \approx 1367\ \mathrm{m/s}\) For nitrogen molecule:
03

rms speed of nitrogen

\(v_{rms_{N_2}} = \sqrt{\frac{3(1.38 \times 10^{-23})(298.15)}{28.0134 \times 10^{-3}/(6.022 \times 10^{23})}} \approx 515\ \mathrm{m/s}\) For hydrogen molecule:
04

rms speed of hydrogen

\(v_{rms_{H_2}} = \sqrt{\frac{3(1.38 \times 10^{-23})(298.15)}{2.01588 \times 10^{-3}/(6.022 \times 10^{23})}} \approx 1929\ \mathrm{m/s}\) For oxygen molecule:
05

rms speed of oxygen

\(v_{rms_{O_2}} = \sqrt{\frac{3(1.38 \times 10^{-23})(298.15)}{31.9988 \times 10^{-3}/(6.022 \times 10^{23})}} \approx 482\ \mathrm{m/s}\) The rms speeds at \(25^{\circ} \mathrm{C}\) are approximately: Helium atoms: 1367 m/s Nitrogen molecules: 515 m/s Hydrogen molecules: 1929 m/s Oxygen molecules: 482 m/s

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free