\(_{52}^{106} \mathrm{Te}\) is radioactive; it \(\alpha\) decays to $^{102} \mathrm{s}_{0} \mathrm{Sn} .\( " \)_{50}^{102} \mathrm{Sn}$ is itself radioactive and has a half-life of 4.5 s. At \(t=0,\) a sample contains 4.00 mol of \(^{106}\) Te and 1.50 mol of \(^{102}\) so Sn. At \(t=\) \(25 \mu \mathrm{s},\) the sample contains \(3.00 \mathrm{mol}\) of \(^{106} \mathrm{Te}\) and $2.50 \mathrm{mol}\( of \)^{102} \mathrm{s} 0$ Sn. How much 102 50 Sn will there be at \(t=50 \mu \mathrm{s} ?\)

Short Answer

Expert verified
Answer: Approximately 3.42 moles

Step by step solution

01

Find the decay constant of \(_{50}^{102}\mathrm{Sn}\)

Using the half-life formula, we can determine the decay constant \(\lambda_{Sn}\) for \(_{50}^{102}\mathrm{Sn}\): \[T_{1/2} = \frac{ln(2)}{\lambda}\] Given half-life \(T_{1/2} = 4.5\mathrm{s}\), solve for \(\lambda_{Sn}\): \[\lambda_{Sn} = \frac{ln(2)}{4.5}\] Now calculate \(\lambda_{Sn}\): \[\lambda_{Sn} \approx 0.154\,\mathrm{s}^{-1}\]
02

Write the equation for moles of \(_{50}^{102}\mathrm{Sn}\) and \(_{52}^{106}\mathrm{Te}\)

At time \(t\), the equation for the moles of \(_{50}^{102}\mathrm{Sn}\) is: \[n_{Sn}(t) = n_{Sn0}e^{-\lambda_{Sn}t}\] And the equation for moles of \(_{52}^{106}\mathrm{Te}\) is: \[n_{Te}(t) = n_{Te0}e^{-\lambda_{Te}t}\] We are given 2 sets of values: 1. At \(t = 0\): \[n_{Te0} = 4.00\,mol\] \[n_{Sn0} = 1.50\,mol\] 2. At \(t = 25\,\mu s\): \[n_{Te}(25\,\mu s) = 3.00\,mol\] \[n_{Sn}(25\,\mu s) = 2.50\,mol\]
03

Find the decay constant of \(_{52}^{106}\mathrm{Te}\)

Use the given information to find \(\lambda_{Te}\): \[3.00 = 4.00 e^{-\lambda_{Te}(25\,\mu s)}\] Solve for \(\lambda_{Te}\): \[\lambda_{Te} = \frac{ln(4/3)}{25\,\mu s}\] Now calculate \(\lambda_{Te}\): \[\lambda_{Te} \approx 1.849 \times 10^{-3}\,\mathrm{s}^{-1}\]
04

Calculate the amount of \(_{50}^{102}\mathrm{Sn}\) at \(t = 50\, \mu s\)

To calculate the amount of \(_{50}^{102}\mathrm{Sn}\) at \(t = 50\, \mu s\), use the following equations: \[n_{Te}(50\,\mu s) = 4.00 e^{-\lambda_{Te}(50\,\mu s)}\] \[n_{Sn}(50\,\mu s) = \left[n_{Sn0} + \left(n_{Te0} - n_{Te}(50\,\mu s)\right)\right]e^{-\lambda_{Sn}(50\,\mu s)}\] First, calculate \(n_{Te}(50\,\mu s)\): \[n_{Te}(50\,\mu s) \approx 2.08\,mol\] Now, calculate \(n_{Sn}(50\,\mu s)\): \[n_{Sn}(50\,\mu s) = \left[1.50 + \left(4.00 - 2.08\right)\right]e^{-0.154 \times 50 \times 10^{-6}}\] Finally, calculate the value: \[n_{Sn}(50\,\mu s) \approx 3.42\,mol\] So, at \(t = 50\, \mu s\), there will be approximately 3.42 moles of \(_{50}^{102}\mathrm{Sn}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free