The approximate maximum speeds of various animals follow, but in different units of speed. Convert these data to \(\mathrm{m} / \mathrm{s}\), and thereby arrange the animals in order of increasing maximum speed: squirrel, \(19 \mathrm{~km} / \mathrm{h}\); rabbit, 30 knots; snail, \(0.030 \mathrm{mi} / \mathrm{h}\); spider, \(1.8 \mathrm{ft} / \mathrm{s}\); cheetah, \(1.9 \mathrm{~km} / \mathrm{min}\); human, \(1000 \mathrm{~cm} / \mathrm{s} ;\) fox, \(1100 \mathrm{~m} / \mathrm{min} ;\) lion, \(1900 \mathrm{~km} /\) day.

Short Answer

Expert verified
After converting all the given speeds to \( \mathrm{m} / \mathrm{s} \) and arranging them in increasing order, the result is: Snail (0.0134 \( \mathrm{m} / \mathrm{s} \)), Spider (0.55 \( \mathrm{m} / \mathrm{s} \)), Squirrel (5.28 \( \mathrm{m} / \mathrm{s} \)), Human (10 \( \mathrm{m} / \mathrm{s} \)), Rabbit (15.42 \( \mathrm{m} / \mathrm{s} \)), Fox (18.33 \( \mathrm{m} / \mathrm{s} \)), Lion (22.01 \( \mathrm{m} / \mathrm{s} \))

Step by step solution

01

Calculate Squirrel's Speed

First, let's convert squirrel's speed from \(\mathrm{km} / \mathrm{h}\) to \(\mathrm{m} / \mathrm{s}\). The conversion factor between these units is \( \frac{1 \mathrm{km}}{1000 \mathrm{m}} \) and \( \frac{1 \mathrm{h}}{3600 \mathrm{s}} \). Hence, the speed of squirrel is \( \frac{19 \mathrm{km} / \mathrm{h}}{1} \cdot \frac{1000 \mathrm{m}}{1 \mathrm{km}} \cdot \frac{1 \mathrm{h}}{3600 \mathrm{s}} = 5.28 \mathrm{m} / \mathrm{s} \)
02

Calculate Rabbit's Speed

Secondly, the rabbit's speed needs to be converted from knots to \( \mathrm{m} / \mathrm{s} \). One knot equals \(0.514 \mathrm{m} / \mathrm{s}\). So, the speed of a rabbit is \(30 \mathrm{knots} \cdot 0.514 \mathrm{m} / \mathrm{s} = 15.42 \mathrm{m} / \mathrm{s} \)
03

Calculate Snail's Speed

Thirdly, convert the snail's speed from \(\mathrm{mi} / \mathrm{h}\) to \(\mathrm{m} / \mathrm{s}\). One \(\mathrm{mi} / \mathrm{h}\) is approximately \(0.447 \mathrm{m} / \mathrm{s}\). Therefore, the snail's speed is \(0.03 \mathrm{mi} / \mathrm{h} \cdot 0.447 \mathrm{m} / \mathrm{s} = 0.0134 \mathrm{m} / \mathrm{s} \)
04

Calculate Spider's Speed

4th, convert spider's speed from \(\mathrm{ft} / \mathrm{s}\) to \(\mathrm{m} / \mathrm{s}\). The conversion factor is \( \frac{1 \mathrm{ft}}{0.305 \mathrm{m}} \), therefore, the speed of spider is \(1.8 \mathrm{ft} / \mathrm{s} \cdot \frac{0.305 \mathrm{m}}{1 \mathrm{ft}} = 0.55 \mathrm{m} / \mathrm{s}\)
05

Calculate Human's Speed

The 5th step consists of converting the human speed from \(\mathrm{cm} / \mathrm{s}\) to \(\mathrm{m} / \mathrm{s}\). In this case, it's needed to divide by 100, hence the human speed is \( \frac{1000 \mathrm{cm} / \mathrm{s}}{100} = 10 \mathrm{m} / \mathrm{s} \)
06

Calculate Fox's Speed

Using the conversion factor \( \frac{1 \mathrm{min}}{60 \mathrm{s}} \), the fox speed is \( \frac{1100 \mathrm{m} / \mathrm{min}}{1} \cdot \frac{1 \mathrm{min}}{60 \mathrm{s}} = 18.33 \mathrm{m} / \mathrm{s} \)
07

Calculate Lion's Speed

Finally, to find out lion's speed, you should use the conversion factors \( \frac{1 \mathrm{km}}{1000 \mathrm{m}} \), \( \frac{1 \mathrm{day}}{24 \mathrm{h}} \) and \( \frac{1 \mathrm{h}}{3600 \mathrm{s}} \), hence the lion's speed is \( \frac{1900 \mathrm{km} / \mathrm{day}}{1} \cdot \frac{1000 \mathrm{m}}{1 \mathrm{km}} \cdot \frac{1 \mathrm{day}}{24 \mathrm{h}} \cdot \frac{1 \mathrm{h}}{3600 \mathrm{s}} = 22.01 \mathrm{m} / \mathrm{s} \)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free