Two vectors are given by \(\overrightarrow{\mathbf{a}}=4 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}+\hat{\mathbf{k}}\) and \(\overrightarrow{\mathbf{b}}=-\hat{\mathbf{i}}+\hat{\mathbf{j}}+4 \hat{\mathbf{k}} .\) Find \((a) \overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}},(b) \overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}}\), and \((c)\) a vector \(\overrightarrow{\mathbf{c}}\) such that \(\overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}=0\)

Short Answer

Expert verified
The sum of vectors \( \overrightarrow{\mathbf{a}} \) and \( \overrightarrow{\mathbf{b}} \) is \( 3\hat{\mathbf{i}} - 2\hat{\mathbf{j}} + 5\hat{\mathbf{k}} \). The difference of vectors \( \overrightarrow{\mathbf{a}} \) and \( \overrightarrow{\mathbf{b}} \) is \( 5\hat{\mathbf{i}}-4\hat{\mathbf{j}}-3\hat{\mathbf{k}} \). The vector \( \overrightarrow{\mathbf{c}} \) that satisfies the condition \( \overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}=0 \) is \( -5\hat{\mathbf{i}} + 4\hat{\mathbf{j}} + 3 \hat{\mathbf{k}} \).

Step by step solution

01

Adding Vectors

Vectors are added by component. So to find \( \overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}} \), the i, j, and k components of the two vectors should be added separately. \(\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}} = (4 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}+\hat{\mathbf{k}}) + (-\hat{\mathbf{i}}+\hat{\mathbf{j}}+4 \hat{\mathbf{k}}) = 3\hat{\mathbf{i}} - 2\hat{\mathbf{j}} + 5\hat{\mathbf{k}} \)
02

Subtracting Vectors

Like addition, vector subtraction is also done by subtracting corresponding components. So to find \( \overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}} \), subtract the i, j, and k components of vector b from vector a. \(\overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}} = (4 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}+\hat{\mathbf{k}}) - (-\hat{\mathbf{i}}+\hat{\mathbf{j}}+4 \hat{\mathbf{k}}) = 5\hat{\mathbf{i}} - 4\hat{\mathbf{j}} - 3\hat{\mathbf{k}} \)
03

Find Vector \( \overrightarrow{\mathbf{c}} \)

To make the equation \( \overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}=0 \) correct, \( \overrightarrow{\mathbf{c}} \) should be equal to \( -\overrightarrow{\mathbf{a}} +\overrightarrow{\mathbf{b}} \).We find it by subtracting vector a from vector b: \( \overrightarrow{\mathbf{c}} = -\overrightarrow{\mathbf{a}} +\overrightarrow{\mathbf{b}} = -4\hat{\mathbf{i}} +3\hat{\mathbf{j}} -\hat{\mathbf{k}} + -\hat{\mathbf{i}}+\hat{\mathbf{j}}+4 \hat{\mathbf{k}} = -5\hat{\mathbf{i}} + 4\hat{\mathbf{j}} + 3 \hat{\mathbf{k}} \).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free