\(1 \mathrm{~kg} \mathrm{~m}^{-3}=\) ________ (1) \(1000 \mathrm{~g} \mathrm{~m}^{-3}\) (2) \(\frac{1}{1000} \mathrm{~g} \mathrm{~cm}^{-3}\) (3) \(10000 \mathrm{~kg} \mathrm{~cm}^{-3}\) (4) \(1 \mathrm{~g} \mathrm{~cm}^{-3}\)

Short Answer

Expert verified
1) \(1000\mathrm{~g} \mathrm{~m}^{-3}\) 2) \(\dfrac{1}{1000} \mathrm{~g} \mathrm{~cm}^{-3}\) 3) \(1 \mathrm{~kg} \mathrm{~cm}^{-3}\) Answer: 1) \(1000\mathrm{~g} \mathrm{~m}^{-3}\) and 2) \(\dfrac{1}{1000} \mathrm{~g} \mathrm{~cm}^{-3}\)

Step by step solution

01

Rewrite the given density with conversion factors

First, you need to rewrite the quantity with the conversion factors. To convert from kilograms to grams, you can use the conversion factor of \(1 \mathrm{~kg}=1000\mathrm{~g}\), and to convert from meters to centimeters, you can use the conversion factor of \(1\mathrm{~m} = 100\mathrm{~cm}\).
02

Convert the grams to kilograms

Multiply the given density by the conversion factor from kilograms to grams: \((1\mathrm{~kg} \mathrm{~m}^{-3})\times(1000\mathrm{~g}/1\mathrm{~kg}) = 1000\mathrm{~g} \mathrm{~m}^{-3}\). This matches alternative (1).
03

Convert the meters to centimeters

Now, convert the given density from meters to centimeters: \((1\mathrm{~kg} \mathrm{~m}^{-3})\times(100\mathrm{~cm}/1\mathrm{~m})^3 = 1\mathrm{~kg} \left(\frac{100\mathrm{~cm}}{1\mathrm{~m}}\right)^3 \mathrm{cm}^{-3} = 1\mathrm{~kg}~\frac{1}{1~000\,000}~\mathrm{cm}^{-3}\).
04

Convert the kilograms to grams in the result from Step 3

Convert the kilograms to grams in the obtained expression from step 3: \(1\mathrm{~kg}~\frac{1}{1~000\,000}~\mathrm{cm}^{-3}\times\frac{1000\mathrm{~g}}{1\mathrm{~kg}} =\frac{1}{1000} \mathrm{~g} \mathrm{~cm}^{-3}\). This matches alternative (2).
05

Compare the obtained expressions to the alternatives

We have found two expressions: \(1000 \mathrm{~g} \mathrm{~m}^{-3}\) and \(\frac{1}{1000} \mathrm{~g} \mathrm{~cm}^{-3}\). Comparing these expressions to the alternatives, we can see that (1) \(1 \mathrm{~kg}\mathrm{~m}^{-3}=1000 \mathrm{~g} \mathrm{~m}^{-3}\) and (2) \(1 \mathrm{~kg} \mathrm{~m}^{-3}=\frac{1}{1000} \mathrm{~g} \mathrm{~cm}^{-3}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free