Chapter 1: Problem 42
Will mass of the solid body changes with change in its volume?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Chapter 1: Problem 42
Will mass of the solid body changes with change in its volume?
These are the key concepts you need to understand to accurately answer the question.
All the tools & learning materials you need for study success - in one app.
Get started for freeMatch the entries given in column A with the appropriate ones in column \(B\). $$ \begin{array}{lllll} \hline & {\text { Column A }} & {\text { Column B }} \\ \hline \text { A. } & 1 \mathrm{~g} \mathrm{~cm}^{-3} & (\quad) & \text { a. } 1000 \mathrm{~kg} \mathrm{~m}^{-3} \\ \text { B. } & \text { Convection current } & ( \quad ) & \text { b. } \mathrm{cm}^{3} \\ \text { C. } & \text { Volume } & ( \quad ) & \text { c. } \text { Measurement of large distances } \\ \text { D. } & \text { Triangulation method } & (\quad ) & \text { d. } \text { Mass/volume } \\ \text { E. } & \text { Mass } & (\quad ) & \text { e. } \text { Change in density } \\ \text { F. } & \text { Density } & \text { ( ) } & \text { f. } \text { kg } \\\ \hline \end{array} $$
Define one gram force.
Match the entries given in column A with the appropriate ones in column \(B\). $$ \begin{array}{lll} \hline {\text { Column A }} & {\text { Column B }} \\ \hline \text { A. Physics } & \text { ( ) a. To detect fracture in a bone } \\\ \text { B. X-rays } & \text { ( ) b. } 1000 \text { litres } \\ \text { C. Aim of science } & \text { ( ) c. Weight of body of mass } 10^{-3} \mathrm{~g} \\ \text { D. The volume of } 1 \mathrm{~m}^{3} \text { is } & \text { ( ) d. Triangulation method } \\ \text { E. } 1 \text { dyne } & \text { ( ) e. Convection current in air } \\ \text { F. Ventilation in a room } & \text { ( ) f. Deals with interaction between matter and energy } \\ \text { G. The distance between the } & \text { ( ) g. To find cause of an event } \\ \text { moon and the Earth } & & \end{array} $$
Convert \(1 \mathrm{~m} \mathrm{~s}^{-2}\) into \(\mathrm{cm} \mathrm{s}^{-2}\).
The density of a substance is \(5 \mathrm{~kg}\) per litre. Express it in \(\mathrm{g} \mathrm{cm}^{-3}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.