(a) Let the distance travelled be 'd'. The speed of \(^{\prime} A^{\prime},
v_{A}=\frac{d}{20} m s^{-1}\)
The speed of ' \(\mathrm{B}^{\prime},
\mathrm{v}_{\mathrm{B}}=\frac{\mathrm{d}}{22} \mathrm{~m} \mathrm{~s}^{-1}\).
\(\Rightarrow
\frac{\mathrm{v}_{\mathrm{A}}}{\mathrm{v}_{\mathrm{B}}}=\frac{\frac{\mathrm{d}}{20}}{\frac{\mathrm{d}}{22}}=\frac{22}{20}=\frac{11}{10}=11:
10\)
(b) Let them run for 't's.
Then, \(\mathrm{d}_{\mathrm{A}}=\mathrm{v}_{\mathrm{A}} \times
\mathrm{t}=\frac{\mathrm{d}}{20} \times \mathrm{t}\)
\(\mathrm{d}_{\mathrm{B}}=\mathrm{v}_{\mathrm{B}} \times
\mathrm{t}=\frac{\mathrm{d}}{22} \times \mathrm{t}\)
\(\Rightarrow
\frac{\mathrm{d}_{\mathrm{A}}}{\mathrm{d}_{\mathrm{B}}}=\frac{\frac{\mathrm{d}}{20}(\mathrm{t})}{\frac{\mathrm{d}}{22}(\mathrm{t})}=\frac{22}{20}=\frac{11}{10}=11:
10\)