Chapter 3: Problem 45
We know \(\mathrm{T}=2 \pi \sqrt{\frac{\ell}{\mathrm{g}}} \Rightarrow \mathrm{T} \Rightarrow \sqrt{\ell}\) \(\mathrm{T}^{2}=4 \pi^{2} \frac{\ell}{\mathrm{g}} \Rightarrow \mathrm{T}^{2} \alpha \ell\) From above relationships, it is clear that as the length of simple pendulum increases, time period also increases and vice versa.