Chapter 3: Problem 47
The average distance per unit time, when the body is moving with variable speed, is called average speed, Average speed \(=\frac{\text { Total distance travelled }}{\text { Total time taken }}\)
Chapter 3: Problem 47
The average distance per unit time, when the body is moving with variable speed, is called average speed, Average speed \(=\frac{\text { Total distance travelled }}{\text { Total time taken }}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeFill in the Blanks. \(\frac{\mathrm{T}}{2}\) The time taken to perform one to-and-fro motion (or) from one extreme position to other extreme position and back is called time period (T).
(a) Let the distance travelled be 'd'. The speed of \(^{\prime} A^{\prime}, v_{A}=\frac{d}{20} m s^{-1}\) The speed of ' \(\mathrm{B}^{\prime}, \mathrm{v}_{\mathrm{B}}=\frac{\mathrm{d}}{22} \mathrm{~m} \mathrm{~s}^{-1}\). \(\Rightarrow \frac{\mathrm{v}_{\mathrm{A}}}{\mathrm{v}_{\mathrm{B}}}=\frac{\frac{\mathrm{d}}{20}}{\frac{\mathrm{d}}{22}}=\frac{22}{20}=\frac{11}{10}=11: 10\) (b) Let them run for 't's. Then, \(\mathrm{d}_{\mathrm{A}}=\mathrm{v}_{\mathrm{A}} \times \mathrm{t}=\frac{\mathrm{d}}{20} \times \mathrm{t}\) \(\mathrm{d}_{\mathrm{B}}=\mathrm{v}_{\mathrm{B}} \times \mathrm{t}=\frac{\mathrm{d}}{22} \times \mathrm{t}\) \(\Rightarrow \frac{\mathrm{d}_{\mathrm{A}}}{\mathrm{d}_{\mathrm{B}}}=\frac{\frac{\mathrm{d}}{20}(\mathrm{t})}{\frac{\mathrm{d}}{22}(\mathrm{t})}=\frac{22}{20}=\frac{11}{10}=11: 10\)
Fill in the Blanks. vibratory The molecules in solid undergo vibratory motion.
Fill in the Blanks. \(\frac{1}{1000}\) 1000 millisecond \(=1 \mathrm{~s}\) \(\Rightarrow 1\) millisecond \(=\frac{1}{1000}\) th part of a second.
The initial velocity, \(\mathrm{u}=108 \mathrm{~km} \mathrm{~h}^{-1}=30 \mathrm{~m} \mathrm{~s}^{-1}\) The final velocity, \(\mathrm{v}=0 \mathrm{~m} \mathrm{~s}^{-1}\) The time taken to stop lorry, \(\mathrm{t}=30 \mathrm{~s}\). The acceleration of the lorry, \(\mathrm{a}=\frac{\mathrm{v}-\mathrm{u}}{\mathrm{t}}=\frac{0-30}{30}=-1 \mathrm{~m} \mathrm{~s}^{-2}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.