Scientists design a new particle accelerator in which protons (mass 1.7 x 10-27kg ) follow a circular trajectory given by r=ccoskt2ı^+csinkt2ȷ^ where c=5.0 m and k=8.0 x 104 rad/s2 are constants and t is the elapsed time.
a. What is the radius of the circle?
b. What is the proton's speed at t=3.0s ?
c. What is the force on the proton at t=3.0 s ? Give your answer in component form.

Short Answer

Expert verified

a) Radius of the circle is 5 m.

b) proton's speed at t=3.0s is 2.4 x 106m/s

c) the force on the proton at t=3.0 s is 1.82×10-15i^+0.71×10-15jN

Step by step solution

01

Part(a) Step 1 : given information

Mass of the particle m=1.7 x 10-27 kg

Circular trajectory = r=ccoskt2ı^+csinkt2ȷ^

c= 5 m

k= 8 x 104rad/sec2

02

Part(a) Step 2 : Explanation

We can write an equation of particle motion is given as,

r=ccoskt2ı^+csinkt2ȷ^

Where,
c =radius of the circular path

So we can say radius of the path is 5 m

03

Part(b) Step 1 : given information

Mass of the particle m=1.7 x 10-27 kg

Circular trajectory r=ccoskt2ı^+csinkt2ȷ^

c= 5 m

k= 8 x 104rad/sec2

04

Part(b) Step2: Explanation

Velocity is calculated as

v=drdt=ddtccoskt2i^+csinkt2j^=2kct-sinkt2i^+coskt2j^

Substitute the value we get

v=2×(8×104rad/s2)×(5m)×(3s)[-sin(8×104rad/s2)×(3s)2)i+cos(8×104rad/s2)×(3s)2)j]v=2.4×106m/s

05

Part(c) Step 1 : given information

Part(c) Step 1 : given information

Mass of the particle m=1.7 x 10-27 kg

Circular trajectory = r=ccoskt2ı^+csinkt2ȷ^

c= 5 m

k= 8 x 104rad/sec2

06

Part(c) Step 2: Explanation

Force is calculated as

F=ma

Lets find acceleration

a=v=drdt=dvdt=ddt2kct-sinkt2i^+coskt2j^=2kcddtt-sinkt2i^+coskt2j^=2kc-sinkt2i^+coskt2j^+2kt2-coskt2i^-sinkt2j^kt2=8×104×32=7.2×105sinkt2=-0.36andcoskt2=-0.93

a=2×(8×104rad/sec2)×(5m)(-0.36i^-0.93j^)+2×7.2×105(0.93i^+0.36j^)=8×105×2×7.2×105(0.93i^+0.36j^)=1.15×1012(0.93i^+0.36j^)m/s2

Now substitute values we get

F=ma=(1.7×10-27kg)×(1.15×1012(0.93i^+0.36j^)m/sec2)=1.96×10-15(0.93i^+0.36j^)N=1.82×10-15i^+0.71×10-15j^N

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free