An electric dipole at the origin consists of two charges q spaced apart along the y-axis.

a. Find an expression for the potential V(x, y) at an arbitrary point in the xy-plane. Your answer will be in terms of q, s, x, and y.

b. Use the binomial approximation to simplify your result from part a when s V x and s V y.

c. Assuming s V x and y, find expressions for Ex and Ey, the components of E u for a dipole.

d. What is the on-axis field E? Does your result agree with Equation 23.10?

e. What is the field E u on the bisecting axis? Does your result agree with Equation 23.11?

Short Answer

Expert verified

.

Step by step solution

01

Step 1. Given information

An electric dipole at the origin consists of two charges q spaced apart along the y-axis.

02

Step 2. Finding the expression for part A

(a).

Take an arbitrary point in the xy plane with the position vector with respect to the origin.

r=xi+yj

Set s=2 a. The position of this point with respect to the +q charge is

r1=(x-a)i+yj

And the position of this point with respect to the -q charge is

r2=(x+a)i+yj

The potential due to +q is then equal to

V1=14πε0qr1

and the potential due to -q is

V2=-14πε0qr2

We havethat

r1=(x-a)2+y2,r2=(x+a)2+y2

The total potential due to both charges is

V(x,y)=q4πε01(x-a)2+y2-1(x+a)2+y2

Remember that a=s/2 so

V(x,y)=q4πε01x-s22+y2-1x+s22+y2

03

Step 3. Simplify for part b

(b).

The binomial approximation says

$(1+x)^{\alpha} \approx 1+\alpha x$, for $x \ll 1$

Rewrite

$$

\begin{aligned}

\frac{1}{\sqrt{(x-a)^{2}+y^{2}}} &=\left((x-a)^{2}+y^{2}\right)^{-\frac{1}{2}}=\left(x^{2}+y^{2}-2 a x+a^{2}\right)^{-\frac{1}{2}} \\

&=\left[\text { neglect } a^{2} \text { compared to other terms }\right]=\\

&=\left(x^{2}+y^{2}\right)^{-\frac{1}{2}}\left(1-\frac{2 x}{x^{2}+y^{2}} a\right)^{-\frac{1}{2}}=\\

&=[\text { apply binomial approximation }]=\\

&=\left(x^{2}+y^{2}\right)^{-\frac{1}{2}}\left(1+\frac{x a}{x^{2}+y^{2}}\right)

\end{aligned}

$$

Similarly

$$

\begin{aligned}

\frac{1}{\sqrt{(x+a)^{2}+y^{2}}} &=\left((x+a)^{2}+y^{2}\right)^{-\frac{1}{2}}=\left(x^{2}+y^{2}+2 a x+a^{2}\right)^{-\frac{1}{2}} \\

&=\left[\text { neglect } a^{2} \text { compared to other terms }\right]=\\

&=\left(x^{2}+y^{2}\right)^{-\frac{1}{2}}\left(1+\frac{2 x}{x^{2}+y^{2}} a\right)^{-\frac{1}{2}}=\\

&=[\text { apply binomial approximation }]=\\

&=\left(x^{2}+y^{2}\right)^{-\frac{1}{2}}\left(1-\frac{x a}{x^{2}+y^{2}}\right)

\end{aligned}

$$

Therefore

$$

\frac{1}{\sqrt{(x-a)^{2}+y^{2}}}-\frac{1}{\sqrt{(x+a)^{2}+y^{2}}}=\frac{2 x a}{\left(x^{2}+y^{2}\right)^{\frac{3}{2}}} .

$$

This yields for the potential

$$

V(x, y)=\frac{q}{4 \pi \varepsilon_{0}} \frac{2 x a}{\left(x^{2}+y^{2}\right)^{\frac{2}{2}}}

$$

Remember that $s=2 a$ so

$$

V(x, y)=\frac{q}{4 \pi \varepsilon_{0}} \frac{x s}{\left(x^{2}+y^{2}\right)^{\frac{3}{2}}}

$$

04

Step 4. Finding a solution for part (c)

We will use the expression for V derived in part b. to find the components of the field. As we know, the x and y components of the field are given by minus the partial derivative of V with respect to x and y.

$$\begin{aligned}E_{x}&=-\frac{\partialV}{\partialx}=-\frac{\partial}{\partialx}\frac{q}{4\pi\varepsilon_{0}}\frac{xs}{\left(x^{2}+y^{2}\right)^{\frac{1}{2}}}=\\&=-\frac{qs}{4\pi\varepsilon_{0}}\left(\frac{1}{\left(x^{2}+y^{2}\right)^{\frac{3}{2}}}-\frac{3}{2}\frac{2x^{2}}{\left(x^{2}+y^{2}\right)^{\frac{1}{2}}}\right)=\\&=-\frac{qs}{4\pi\varepsilon_{0}}\frac{-2x^{2}+y^{2}}{\left(x^{2}+y^{2}\right)^{\frac{1}{2}}}=\frac{qa}{4\pi\varepsilon_{0}}\frac{2x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{\frac{3}{2}}}.\\E_{y}&=-\frac{\partialV}{\partialy}=-\frac{\partial}{\partialy}\frac{q}{4\pi\varepsilon_{0}}\frac{xs}{\left(x^{2}+y^{2}\right)^{\frac{1}{2}}}=\\&=-\frac{qsx}{4\pi\varepsilon_{0}}\frac{\partial}{\partialy}\frac{1}{\left(x^{2}+y^{2}\right)^{\frac{1}{2}}}=-\frac{qsx}{4\pi\varepsilon_{0}}\left(-\frac{3}{2}\frac{2y}{\left(x^{2}+y^{2}\right)^{\frac{1}{2}}}\right)=\\&=\frac{qs}{4\pi\varepsilon_{0}}\frac{3xy}{\left(x^{2}+y^{2}\right)^{\frac{5}{2}}}.\end{aligned}$$

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free