Chapter 5: Problem 1
By changing variables to spherical coordinates \(r, \theta, \phi\), such that \(x=r \sin \theta \cos \phi\), \(y=r \sin \theta \sin \phi, z=r \cos \theta\), show that the laplacian of \(p\) becomes $$ \nabla^{2} p=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial p}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial p}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} p}{\partial \phi^{2}} $$