Chapter 5: Problem 2
Show that the average kinetic energy density in a traveling sinusoidal sound wave may be written $$ \bar{K}_{1}=\frac{1}{4} \rho \circ \dot{\varrho}^{*} \hat{\mathrm{e}}^{*} $$ where \(\dot{\mathbf{e}}^{*}\) is the complex conjugate of \(\dot{\boldsymbol{e}}\) Also establish that the average potential energy density and the a verage power flow are $$ \begin{aligned} \bar{V}_{1} &=\frac{1}{4} \frac{p p^{*}}{\rho_{0} c^{2}} \\ \overline{\mathbf{P}}_{1} &=\frac{1}{2} p \dot{\underline{e}}^{*}=\frac{1}{2} p^{*} \dot{\mathbf{e}} \end{aligned} $$