Chapter 8: Problem 1
Use the general form of Maxwell's equations (8.2.17) to (8.2.20), together with Gauss' and Stokes' theorems, to obtain the corresponding integral equations for a material medium, $$ \begin{aligned} &\oint_{s} \mathbf{D} \cdot d \mathbf{S}=q_{t r e t} \\ &\oint_{L} \mathbf{E} \cdot d \mathrm{l}=-\frac{d \Phi_{m}}{d t} \\ &\oint_{S} \mathbf{B} \cdot d \mathbf{S}=0 \\ &\oint_{L} \mathbf{H} \cdot d \mathbf{l}=I_{\text {froe }}+\frac{d \Phi_{\bullet}}{d t} \end{aligned} $$ where \(\Phi_{m}=\int \mathrm{B} \cdot d \mathrm{~S}\) and \(\Phi_{*}=\int \mathrm{D} \cdot d \mathrm{~S}\) are the magnetic and electric fluxes linking the closed line \(L\). These equations are generalizations of \((8.2 .11)\) to \((8.2 .14)\).