Chapter 8: Problem 11
(a) From \((8.7 .10)\) and \((8.7 .13)\), show that the guided ave impedance \(\left(E_{x}{ }^{2}+E_{y}{ }^{2}\right)^{1 / 2} /\) \(\left(H_{x}{ }^{2}+H_{z}{ }^{2}\right)^{1 / 2}\) is \(Z_{\mathrm{TE}}=\frac{Z_{0}}{\left[1-\left(\lambda_{0} / \lambda_{e}\right)^{2}\right]^{1 / 2}} \quad\) TE modes \(Z_{\text {T? }}=Z_{0}\left[1-\left(\lambda_{0} / \lambda_{c}\right)^{2}\right]^{1 / 2} \quad\) TM modes, where \(Z_{0}\) is the unbounded wave impedance \((8.3 .10)\) or, more generally, \((8.3 .12) .(b)\) For the TE o dominant mode in rectangular waveguide, show that the peak potential difference between opposite points in the cross section is $$ V_{0}=\left[\int_{0}^{b} E_{y}\left(x=\frac{1}{2} a\right) d y\right]_{p e s k}=b E_{0} $$ and that the peak axial current flowing in the top wall is $$ I_{0} \equiv\left[\frac{1}{\mu_{0}} \int_{0}^{a} B_{x}(y=b) d x\right]_{\text {pak }}=\frac{2 a E_{0}}{\pi Z_{\mathrm{TE}}} $$ Since the result of Prob. 8.7.10b can be written $$ \bar{P}=\frac{a b}{4} \frac{E_{0}{ }^{2}}{Z_{\mathrm{TB}}} $$ we can define three other (mode-dependent) waveguide impedances as follows: $$ \begin{aligned} &Z_{V, I}=\frac{V_{0}}{I_{0}}=\frac{\pi}{2}\left(\frac{b}{a} Z_{\mathrm{TE}}\right) \\ &Z_{P, V}=\frac{V_{0}{ }^{2}}{2 P}=2\left(\frac{b}{a} Z_{\mathrm{TE}}\right) \\\ &Z_{P, I}=\frac{2 \bar{P}}{I_{0}{ }^{2}}=\frac{\pi^{2}}{8}\left(\frac{b}{a} Z_{\mathrm{TE}}\right) \end{aligned} $$ which differ by small numerical factors. Only systems supporting a TEM mode (e.g., Sec. 8.1), have a unique impedance.