Chapter 8: Problem 2
(a)\( Generalize the boundary conditions \)(8.6 .5)\( to \)(8.6 .8)\( to include the case where a surface charge density \)\sigma=\Delta q_{\text {tree }} / \Delta S\( and a surface current of magnitude \)K=\Delta I_{\text {fres }} / \Delta l\( exist on the boundary surface, establishing the conditions $$ \text { fi } \begin{aligned} & \cdot\left(x_{22} \mathbf{E}_{2}-x_{41} \mathbf{E}_{1}\right)=\frac{\sigma}{\epsilon_{0}} \\ \text { fi } \times\left(\frac{\mathbf{B}_{2}}{k_{m 2}}-\frac{\mathbf{B}_{1}}{k_{m 1}}\right) &=\mu_{0} \mathbf{K} . \end{aligned} $$ (b) Show that the boundary conditions remain valid when the boundary is not plane and when the respective media are not homogeneous. (c) What are the boundary conditions on the \)\mathbf{D}\( and \)\mathbf{H}$ fields?