(b) Evaluating the skin depth for different applications
Given the equation for \(\delta\) derived in the previous step, we need to compute the skin depth for various wavelengths in vacuum: \(5,000 \,\mathrm{km}\), \(100\, \mathrm{m}\), \(1\, \mathrm{m}\), \(3\,\mathrm{cm}\), and \(500\, \mathrm{nm}\). For copper, \(Z_{0} = 8.3\times10^3 \, \Omega m\) and \(g = 5.8\times10^7 \, \mathrm{S/m}\).
We calculate the skin depth for each wavelength,
$$
\delta=\sqrt{\frac{\lambda_{0}}{\pi Z_{\mu} \pi_{m} g}}.
$$
Values for each application:
1. Power line (\(\lambda_0 = 5,000\, \mathrm{km}\)): $
\delta_{1} = \sqrt{\frac{5000 \times 10^3}{\pi (8.3\times10^3) \pi (5.8\times10^7)}} \approx 1.32 \times 10^{-5}\, \mathrm{m}$.
2. AM Broadcast (\(\lambda_0 = 100\, \mathrm{m}\)): $
\delta_{2} = \sqrt{\frac{100}{\pi (8.3\times10^3) \pi (5.8\times10^7)}} \approx 3.57\times 10^{-7}\, \mathrm{m}$.
3. Television and FM Broadcast (\(\lambda_0 =1\, \mathrm{m}\)): $
\delta_{3}= \sqrt{\frac{1}{\pi (8.3\times10^3) \pi (5.8\times10^7)}} \approx 1.13 \times 10^{-8}\, \mathrm{m}$.
4. Radar (\(\lambda_0 = 3\,\mathrm{cm}\)): $
\delta_{4}= \sqrt{\frac{0.03}{\pi (8.3\times10^3) \pi (5.8\times10^7)}} \approx 6.49 \times 10^{-9}\, \mathrm{m}$.
5. Visible light (\(\lambda_0 = 500\, \mathrm{nm}\)): $
\delta_{5}= \sqrt{\frac{500\times 10^{-9}}{\pi (8.3\times10^3) \pi (5.8\times10^7)}} \approx 2.26 \times 10^{-12}\, \mathrm{m}$.
With increasing frequency, the skin depth becomes smaller. So the size of the skin depth influences the technology in various ways. For applications like power lines and broadcasting, larger skin depth allows for the use of thicker cables. However, for applications like radar and visible light, the skin depth is very small, making them more suitable for thin layers.