(a) From \((8.7 .10)\) and \((8.7 .13)\), show that the guided ave impedance
\(\left(E_{x}{ }^{2}+E_{y}{ }^{2}\right)^{1 / 2} /\) \(\left(H_{x}{ }^{2}+H_{z}{
}^{2}\right)^{1 / 2}\) is
\(Z_{\mathrm{TE}}=\frac{Z_{0}}{\left[1-\left(\lambda_{0} /
\lambda_{e}\right)^{2}\right]^{1 / 2}} \quad\) TE modes
\(Z_{\text {T? }}=Z_{0}\left[1-\left(\lambda_{0} /
\lambda_{c}\right)^{2}\right]^{1 / 2} \quad\) TM modes,
where \(Z_{0}\) is the unbounded wave impedance \((8.3 .10)\) or, more generally,
\((8.3 .12) .(b)\) For the TE o dominant mode in rectangular waveguide, show
that the peak potential difference between opposite points in the cross
section is
$$
V_{0}=\left[\int_{0}^{b} E_{y}\left(x=\frac{1}{2} a\right) d y\right]_{p e s
k}=b E_{0}
$$
and that the peak axial current flowing in the top wall is
$$
I_{0} \equiv\left[\frac{1}{\mu_{0}} \int_{0}^{a} B_{x}(y=b) d x\right]_{\text
{pak }}=\frac{2 a E_{0}}{\pi Z_{\mathrm{TE}}}
$$
Since the result of Prob. 8.7.10b can be written
$$
\bar{P}=\frac{a b}{4} \frac{E_{0}{ }^{2}}{Z_{\mathrm{TB}}}
$$
we can define three other (mode-dependent) waveguide impedances as follows:
$$
\begin{aligned}
&Z_{V, I}=\frac{V_{0}}{I_{0}}=\frac{\pi}{2}\left(\frac{b}{a}
Z_{\mathrm{TE}}\right) \\
&Z_{P, V}=\frac{V_{0}{ }^{2}}{2 P}=2\left(\frac{b}{a} Z_{\mathrm{TE}}\right)
\\\
&Z_{P, I}=\frac{2 \bar{P}}{I_{0}{ }^{2}}=\frac{\pi^{2}}{8}\left(\frac{b}{a}
Z_{\mathrm{TE}}\right)
\end{aligned}
$$
which differ by small numerical factors. Only systems supporting a TEM mode
(e.g., Sec. 8.1), have a unique impedance.