A waveguide becomes a resonant cavity upon placing conducting walls at the two
ends. Show that a resonance occurs when the length \(L\) is an integral number
\(n\) of guide halfwavelengths \(\lambda_{e} / 2 ;\) specifically,
\(\left(\frac{\omega}{c}\right)^{2}=\left(\frac{l
\pi}{a}\right)^{2}+\left(\frac{m \pi}{b}\right)^{2}+\left(\frac{n
\pi}{L}\right)^{2} \quad\) rectangular parallelepiped
\(\left(\frac{\omega}{c}\right)^{2}=\left(\frac{u_{l
m}}{a}\right)^{2}+\left(\frac{n \pi}{L}\right)^{2} \quad\) right circular
cylinder.
Cavity modes, requiring three integral indices, are named \(\mathrm{TE}_{l m
n}\) or \(\mathrm{TM}_{l m n} . \mathrm{Make}\) a mode chart for cylindrical
cavities by plotting loci of resonances on a graph of \((d / L)^{2}\) against
\((f d)^{2}\), where \(d \equiv 2 a, f \equiv \omega / 2 \pi . \dagger\)