Chapter 8: Problem 8
Show that the resistive and reactive parts of an unknown load impedance \(\breve{Z}_{i}=\) \(R_{l}+j X_{1}\) are given by $$ \begin{aligned} &R_{l}=Z_{9} \frac{1-|\not{R}|^{2}}{1-2|\not{R}| \cos \phi+|\vec{R}|^{2}} \\ &X_{1}=Z_{0} \frac{2|\not{R}| \sin \phi}{1-2|\vec{R}| \cos \phi+|\vec{R}|^{2}} \end{aligned} $$ where \(|\not{R}|\) and \(\phi\) specify the complex reflection coeflicient \(R\) and \(Z_{0}\) is the characteristic impedance. Note: See Prob. 1.4.3.